Введение в экологию энергетики Влияние загрязнений

История искусства
Живопись Франции
Живопись Испания
Курбе и реализм
Промышленная архитектура и
эстетика века машин
Архитектура во время перемен
Русские художники начала 20 века
Василий Васильевич Кандинский
Баухаус
Архитектура Москвы
История абстрактного искусства
Импрессионизм
художественная школа
Новая техника живописи
выставки импрессионистов
Импрессионисты и символисты
Ван Гог
Гоген Поль Дега Эдгар
Мане Эдуард Моне Клод
Революция соборов
Энергетика
Экология энергетики
Анализ работы электрофильтров
Регенеративные методы
Ядерное топливо
Математическое моделирование экологических систем
Ядерные топливные циклы
Графика
Выполнение графических работ
Машиностроительное черчение
Инженерная графика
Изучаем ArchiCAD
Строительное проектирование
Трехмерная проекция
Maya 3D
Трехмерное объектно-ориентированное
программное обеспечение CAD
Математика решение задач
Функция нескольких переменных
Интеграл Типовые задачи
Системы линейных уравнений
Предел функции
Производная и дифференциал
Неопределенный интеграл
Теория вероятности
Математика примеры решения задач
Обыкновенные дифференциальные
уравнения
Функция комплексной переменной
Дифференциальное исчисление
Элементы линейной алгебры
Пределы и непрерывность функции
Векторная алгебра
Математический анализ
Исследование функций
аналитическая геометрия
Числовые последовательности
Графические методы решения задач
Информатика
Диспетчер доступа
Межсетевое экранирование
Центральный процессор
персонального компьютера
История развития ПК
Сетевые службы Active Directory
Дополнительные сетевые службы
Физика решение задач
Квантовая и атомная физика
Решение задач по физике примеры
Курс лекций по физике
Расчет электрических цепей.
Исследование линейной цепи
Линейные электрические цепи
Методика расчёта электрических цепей
Физика Кинематика
примеры решения задач
Лекции по физике теория газов

Введение в экологию энергетики Сущность экологического аспекта в энергетике.

Под интенсивностью понимают величину нарушения или загрязнения окружающей среды в единицу времени.

Человек, рис.2, направляет свои усилия на природу, чтобы получить ископаемые, которые являются сырьем для его деятельности.

Таким образом рассмотрена экологическая сторона развития энергетики, да и цивилизации в целом.

Учитывая огромный ущерб, причиняемый как окружающей среде, так и человеку, санитарным законодательством промышленно развитых стран установлены предельно допустимые концентрации (ПДК) веществ, загрязняющих воздух, водоемы и почву.

Влияние загрязнений атмосферного воздуха на состояние здоровья человека.

Техногенное воздействие ТЦ (или технологических процессов вообще, в самом широком смысле слова) на окружающую среду – это форма взаимосвязи технологических и природных ресурсов, т.е. такой процесс обмена продуктами комплексной жизнедеятельности человека (веществом и энергией) с природными компонентами, при котором происходят качественные и количественные изменения компонентов природной среды.

Антропогенная деятельность человека оказывает существенное влияние на состав атмосферы, особенно в местах крупного сосредоточения промышленных объектов (в основном города с сильно развитой промышленной инфраструктурой) и транспорта.

Роль предприятий различных отраслей промышленности нашей страны (в том числе и ТЭС) в загрязнении атмосферы представлена в табл.6.

Ежегодно в земную атмосферу выбрасывается 100 млн. т газообразных оксидов серы и 30 млн. т оксидов азота за счет естественных выделений и соответственно 65 млн. т и 25 млн. т антропогенных выбросов, т.е. уровень антропогенных выбросов приближается к глобальным естественным выбросам оксидов серы и азота, табл.4. А выброс диоксида углерода (СО2), способствующего возникновению парникового эффекта (в создании парникового эффекта вклад диоксида углерода оценивается примерно в 65%, метана – примерно 20%, оксида азота – 5%, а остальное составляют другие компоненты, включая хлор и фторуглеводороды), только в странах СНГ в 1990 г. составил 694,5 млн. тонн.

Среди вторичных фотохимических реакций важное значение имеет взаимодействие молекулярного кислорода и оксида азота NO с атомарным кислородом, в результате чего образуется озон О3 и диоксид азота.

Влияние вредных выбросов электростанций на природу и человека.

Показатель вредности продуктов сгорания В соответствии с законом об охране атмосферного воздуха, размещение нового предприятия в местности, где фоновое значение загрязнений атмосферы превышает ПДК, должно сопровождаться осуществлением мероприятий по снижению выбросов соответствующих веществ на действующих предприятиях.

С учетом технологии использования топлива все вредные вещества можно классифицировать на две группы.

Преспективные направления развития природоохранных технологий.

Отличительной особенностью ТЭЦ является комбинированная выработка электрической и тепловой энергии.

Как уже отмечалось выше, дымовые газы являются основным источником загрязнения от действия ТЭС.

В другой установке водо-инерционного типа на орошение подается вода под давлением 240 бар с температурой около 205О С.

Выбросы азота и очистка от них Источником оксидов азота на ТЭС является молекулярный азот воздуха и азотосодержащие компоненты топлива.

В связи с опасностью использования аммиака (высокая токсичность), и необходимостью специальных мер защиты персонала, за рубежом, в частности в Германии [25], проходят промышленные испытания установки с использованием вместо аммиака карбамида, по другому мочевины (NH2)2СО.

Общие сведения Без термической подготовки в физическом смысле, сжигание твердых топлив в котлах невозможно вообще.

Внутрицикловая газификация топлива Получение из твердого топлива горючего газа технологически включенное в термодинамический цикл производства электроэнергии, тепла или другого продукта или их совокупности есть внутрицикловая газификация.

Котлы с циркулирующим кипящим слоем (ЦКС) Кипящий слой характеризуется интенсивностью дутья, превышающей предел устойчивости плотного слоя, но далеко не достигающей скорости витания частиц крупных размеров

Предварительная термическая подготовка твердого топлива с частичной газификацией.

Высокотемпературная подготовка топлива в специальном предтопке - как элементная база экологически перспективного направления развития ТЭЦ.

Недостатком технологии с термической подготовкой топлива можно считать усложнение системы тополивоподготовки по сравнению с традиционными из-за необходимости создания двух потоков топлива (рабочего и инициирующего) и организации паровоздушного дутья для частичной газификации.

В общем случае ТЦП может быть выполнен в горизонтальном или вертикальном исполнении (рис.4) [70].

Выше отмечалось, что сущностью технологии заключается в обработке струей низкотемпературной плазмы (3500…5000 ОС) потока угольной пыли, транспортируемой воздухом.

Выполненные экспериментальные работы и исследования в промышленных условиях на опытно-промышленном стенде позволили получить необходимую информацию и сделать следующие выводы для совершенствования элементной базы технологии:

Обобщение перспектив развития природоохранных технологий Проведенный таким образом анализ современных и перспективных систем очистки от выбросов вредных веществ показал, что в условиях, когда одним из основных источников производства электроэнергии и тепла продолжают оставаться теплоэлектроцентрали, и в условиях прогнозируемого роста потребления твердых горючих ископаемых при высоком фоновом загрязнении окружающей среды, сложившемся в крупных промышленных регионах (в частности, в районе КАТЭКа) наряду с использованием традиционных технологий по обеспечению экологической чистоты ТЭС, необходимо создание новых технологий.

Улавливание твердых веществ из дымовых газов ТЭС Характеристики летучей золы.

Расчет степени улавливания обычно ведется для каждой фракции частиц отдельно.

Дисперсный состав летучей золы во многом зависит от дисперсионного состава сжигаемой угольной пыли, поступающей после размольного устройства в топку.

При выборе и эксплуатации золоуловителей следует учитывать абразивность золы и ее смачиваемость.

Если поток газов движется турбулентно, а частицы достаточно мелки (менее 30 мкм) и активно участвуют в турбулентных пульсациях потока, то с известным допущением можно принять, что концентрация частиц у поверхности мало отличается от средней концентрации в рассматриваемом сечении золоуловителя.

Во всех случаях степень улавливания возрастает с ростом параметра золоулавливания П. Как следует из выражения, определяющего П, параметр золоулавливания возрастает с увеличением скорости дрейфа, поверхности осаждения и уменьшается с увеличением расхода очищаемого газа.

Типы и характеристики золоуловителей В зависимости от мощности ТЭС, зольности топлива, физико-химических свойств золы, санитарно-гигиеническнх условий в районе расположения электростанций выбирается тип золоуловителей. На выбор типа золоуловителей может повлиять и использование золы.

Инерционные золоуловители (расчет инерционных золоуловителей).

В настоящее время циклоны устанавливаются на котлах паропроизводительностью до 500 т/ч.

По табл.4 подбирают батарейный циклон с ближайшим к nОПТ количеством циклонных элементов n.

Прочие инерционные золоуловители Не так широко, как циклоны или батарейные циклоны применяются на ТЭС другие типы инерционных золоуловителей.

Вихревые пылеуловители Вихревые пылеуловители (ВПУ) - это аппараты центробежного действия для очистки газов от пыли.

Ротационные пылеуловители Ротационные пылеуловители - это аппараты для очистки газов от пыли, центробежного действия, которые одновременно с перемещением газов очищают его от фракций пыли крупнее 5 мкм.

Коагуляторы Вентури могут устанавливаться как вертикально, так и горизонтально с небольшим уклоном.

В отечественной практике применение получили два типа мокрых золоуловителей с коагулятором Вентури: МВ-УО ОРГРЭС и МС-ВТИ.

Общее гидравлическое сопротивление коагулятора Вентури и каплеуловителя, Па, рассчитывается по формуле:,

Электрофильтры Одним из хорошо зарекомендовавших себя и перспективным типом золоуловителей для крупных ТЭС являются электрофильтры, которые могут обеспечить высокую степень очистки газов при аэродинамическом сопротивлении не более 150 Па практически без снижения температуры и без увлажнения дымовых газов.

Коронный разряд возникает при достижении определенной напряженности и электрического ноля, называемой критической или начальной, которая, например, для воздуха при атмосферном давлении н температуре 20 ОС составляет около 15 кВ/см.

Для поддержания напряжения в любой момент работы электрофильтра на грани пробивного, когда обеспечивается наилучшая ионизация газов, применена автоматическая схема регулирования.

Анализ работы электрофильтров на ТЭС показал, что основная причина менее эффективной очистки заключается в высоком удельном электрическом сопротивлении (УЭС) r слоя золы, образующемся на осадительных электродах электрофильтра.

1. Определяется активное сечение для прохода газов, м2, эктрофильтра:,

Особенности улавливания золы с неблагоприятными электрофизическими свойствами Решение проблемы эффективной электрической очистки дымовых газов, имеющих неблагоприятные электрофизические свойства, состоит в разработке методов снижения интенсивности или предотвращения образования обратной короны, т. е. создании условий, обеспечивающих стабильную работу электрофильтров.

Температурный метод кондиционирования. Зависимость УЭС золы от температуры носит экстремальный характер (см. рис.12).

Температурно-влажностное кондиционирование. Одним из эффективных путей улучшения очистки продуктов сгорания с неблагоприятными электрофизическими свойствами является предварительное изменение свойств дымовых газов путем использования преимуществ как температурного, так и влажностного кондиционирования газов, рационального сочетания их, т. е. Путем использования температурно-влажностного кондиционированияю

Краткие сведения об улавливании золы на мазутных ТЭС Котлы, сжигающие жидкое топливо, как правило, не оснащены золоуловителями в связи с низким содержанием золы в топливе (АР=0,05...0,15%).

Методы и технологии очистки дымовых газов от оксидов серы.

Наивысшей импульсной яркостью по сравнению с другими источниками излучения являются рентгеновские лазеры.

Исследовательские реакторы мощностью до 20 МВт, предназначенные для физических исследований, учебных целей и производства радиоактивных изотопов.

Общая оценка сокращения выбросов окислов серы Сегодня существует два основных направления снижения выбросов окислов серы энергетическими установками, сжигающими серосодержащее топливо:предварительное (перед сжиганием) снижение серы в исходном топливе (десульфуризация топлива);очистка дымовых газов, выбрасываемых в атмосферу от окислов серы с помощью специальных установок.

Мокрые абсорбционные методы, использующие для связывания сернистого ангидрида промывочные растворы со щелочными свойствами, получили наиболее широкое распространение.

Промышленные установки сероочистки первого поколения, работающие по мокрому известняковому принципу, появились в начале 70-х годов в США и в Японии и не получили широкого распространения, так как в них происходило зарастание абсорбента трудноудаляемыми отложениями, а в качестве конечного продукта получались смесь золы, сульфита кальция и непрореагировавшего известняка, которая после обезвоживания должна направляться в специальные хранилища.

Опытно-экспериментальная установка (ОЭУ) мокрого известнякового метода Губкинской ТЭЦ.

Опытно промышленная установка по аммиачно-циклическому методу (Дорогобужская ТЭЦ) В основу ОПУ Дорогобужской ТЭЦ положен аммиачно-циклический способ очистки дымовых газов от диоксида серы [116].

 Дымовые газы после первой ступени очистки от золы (батарейные циклоны) поступают в электрофильтр 3.

Некоторые технико-экономические характеристики установки предложены в табл.1. Технико-экономические характеристики ОПУ Таблица.

Некоторые зарубежные методы «мокрой»сероочистки Метод «Хемико».

Метод Саарберг-Хельтер-Лурги (СХЛ) Этот метод разработанный фирмами Саарберг-Хельтер Умвельттехник и Лурги (Германия) является типичным мокрьм абсорбционным способом сероочистки второго поколения с получением в качестве конечного продукта товарного гипса.

Метод -Хитачи Японской фирмой "Хитачи" разработано несколько совершенных систем очистки дымовых газов, нашедших применение как в самой Японии, так и за ее пределами.

Все емкости, в которых могут оказаться взвешенные вещества, снабжены перемешивающими устройствами для предотвращения образования отложений.

Метод фирмы Бишофф Фирма Бишофф одна из самых старых фирм Германии, занимающихся вопросами охраны окружающей среды.

Для максимального использования известняка организовано циркуляционное орошение абсорбера с помощью насосов 19 и 20.

Метод Кнауфф-Ресерч-Кортель Принципиальная технологическая схема мокрой известняковой сероочистной установки, предлагаемая фирмой в части подготовки абсорбента, получения и обработки конечного продукта не отличается от описанных ранее.

Дымовые газы от энергоблока мощностью 200 МВт, сжигающего донецкие угли, пройдя очистку от золы в мокром золоуловителе с эффективностью 94...96 %, по газоходу направляются на ОПУ.

Продукты реакции в виде сухого порошка, состоящего из смеси летучей золы, сульфита и сульфата кальция и других примесей, улавливаются золоуловителем, установленным за абсорбером.

При методе распылительной абсорбции продукты реакции содержат химически активный сульфит кальция.

Основное отличие метода заключается в способах организации подвода очищаемого газа к реактору и распыливания известковой суспензии.

Сухие методы сероочистки Из сухих методов сероочистки рассмотрены только процессы, использующие природные реагенты.

Метод «Лифак» Процесс «Лифак», разработанный финской фирмой «Тампелла» по существу является совмещением сухого аддитивного и полусухого методов сероулавливания.

Основные объекты автоматизации процесса следующие: ввод известняка регулируется в зависимости от количества подаваемого топлива. Ввиду того, что качество поступающего топлива (серосодержание, влажность, зольность и др.) меняется, количество подаваемого известняка автоматически корректируется по концентрации SО2 в дымовых газах после котла;

Общий недостаток, характерный для всех технологий основанных на методах сухой очистки дымовых газов, заключается в том, что на всех стадиях технологической цепочки приходится иметь дело с большими объемами очищаемого газа (1 млн. м3/ч газа и более).

Гомогенные восстановительные методы, как и каталитические, предусматривают использование восстанавливающих агентов (NН3, пиридин, пары мочевины, СО, Н2, СН4 и другие углеводороды).

Для проведения процессов адсорбции разработаны различные технологии [9-12, 15, 16]. Наибольшее распространение имеют адсорберы с неподвижным слоем гранулированного или сотового адсорбента.

Высокотемпературные некаталитические методы Одними из наиболее простых и дешевых газофазных технологий денитрации газов являются термические (деструктивные) методы.

Гетерогенно-каталитические методы Каталитические методы обезвреживания газов позволяют эффективно проводить очистку газов от оксидов азота.

Высокотемпературное каталитическое восстановление осуществляют в присутствии газов восстановителей водорода, оксида углерода, углеводородов (пары керосина, нефтяной и природный газ).

Селективное каталитическое восстановление (СКВ) получило в последние годы наибольшее распространение для очистки газов от NОX. Особенностью этого процесса является взаимодействие используемого восстановителя с оксидами азота в присутствии кислорода.

Особенностью вышеприведенных реакций является значительное влияние кислорода на скорость ее протекания. При изменении концентрации О2 от 0,1 до 1,0 % скорость восстановления резко увеличивается на различных катализаторах (рис.2).

Основные области применения методов СКВ - это очистка отходящих газов от NОХ в производстве азотной кислоты и дымовых газов при сжигании топлива.

Эти факторы значительно сокращают срок службы катализатора, снижают степень очистки от NOX.

Смешение аммиака с потоком очищаемого газа оказывает значительное влияние на эффективность процесса очистки. Обращает на себя внимание использование распределенного ввода аммиака.

Можно выделить два вида катализаторов: формованные и пластинчатые.

По данным немецких специалистов, средние капитальные затраты на установку СКВ для угольной ТЭС составляют от 5 до 6 млн.

Метод СКВ является в настоящее время наиболее распространенным способом удаления NOX из дымовых газов в Японии и Германии.

Нерегенеративные методы Из методов этой группы наиболее широкое применение в промышленности получила абсорбция NOX растворами различных щелочей.

Регулятор напора автоматически, независимо от давления вобщем коллекторе, обеспечивает определенный равномерный расход газа в течение всего периода его подачи в абсорбер.

Необходимую степень абсорбции NОX растворами, содержащими щелочи, в поступающем газе обеспечивают и поддерживают за счет эквимолярного соотношения NО/NО2 = 1, как это вытекает из табл.4, которая иллюстрирует зависимость степени абсорбции оксидов азота при различных отношениях NО/NО2, в газе.

При восстановлении оксидов азота водными растворами карбамида протекают следующие реакции.

Регенеративные методы Как отмечалось ранее, регенеративные методы более перспективны.

Рассеивание в атмосфере выбросов электростанций 1. Дымовые трубы.

Большое распространение нашли одноствольные дымовые трубы, выполненные по типу «труба в трубе» со значительным зазором между стволами, позволяющим обеспечить движение людей и проведение ремонтных работ.

Так как наличие вредных веществ в дымовых газах в сотни и тысячи раз превышает предельно допустимые концентрации, требуется рассеивание дымовых газов в атмосферном воздухе.

Предложенная методика применима для ТЭС, расположенных на ровной или слабопересеченной местности, и позволяет определить при неблагоприятных метеорологических условиях максимально-разовую концентрацию загрязняющих веществ в атмосферном воздухе на уровне дыхания человека, т. е. на высоте 1,5 м над поверхностью земли.

Предложенный методический подход позволяет рассчитать минимально допустимую высоту дымовых труб при проектировании ТЭС.

При проектировании и эксплуатации электростанций очень важно знать распределение концентраций вредных веществ на уровне дыхания людей на различных расстояниях от электростанции.

Контроль состава и концентрации вредных веществ в уходящих газах котлов.

Оптический метод основан на явлении поглощения света при прохождении его через пылегазовую среду.

Пример системы автоматизированного контроля за состоянием атмосферы показан на рис.6, где показана АСК ЗВ Запорожской ГРЭС.

Сбросные воды ГЗУ значительно загрязнены взвешенными веществами, имеют повышенную минерализацию и в большинстве случаев повышенную щелочность.

Восприимчивость живых организмов к токсичным веществам с повышением температуры обычно увеличивается.

Какое же влияние оказывают на природные водоемы отдельные загрязнители, характерные для ТЭС?

Шлам, находящийся в сбросных водах предочисток водоподготовительных установок, содержит органические вещества.

Обработка сбросных вод водоподготовительных установок Методы очистки сточных вод подразделяются на механические (физические), физико-химические, химические и биохимические.

В соответствии с условиями сброса сточных вод технология их очистки состоит обычно из трех этапов:

Продувочная вода из осветлителя направляется в сборную емкость.

Сточные воды ионообменной части водоподготовительной установки, если не считать некоторого количества грубодиперсных примесей, поступающих при взрыхлении фильтров, представляют собой истинные растворы солей.

Если сброс сточных вод в водоем нарушает эти условия, то необходимо применять предварительную нейтрализацию.

Очистка сточных вод, содержащих нефтепродукты.

Отстаивание нефтепродуктов производится в нефтеловушках.

При наличии тонущих примесей в сточной воде они выпадают на дно нефтеловушки, сгребаются тем же скребковым транспортером в приямок и при помощи данного клапана (или гидроэлеватора) выводятся из нефтеловушки.

При фильтровании сточных вод частицы нефтепродуктов выделяются из потока воды на поверхности зерен фильтрующего материала и заполняют наиболее узкие поровые каналы.

Регенерацию фильтра следует производить водяным паром давлением 0,03...0,04 МПа через верхнее распределительное устройство.

На рис.11 показан разработанный ВТИ и Теплоэлектропроектом и внедренный на Киевской ТЭЦ-5 вариант схемы нейтрализации и обезвреживания обмывочных вод РВП.

Очистка сточных вод химических промывок и консервации оборудования.

Для обезвреживания промывочных и консервирующих растворов, содержащих нитриты, можно использовать кислые промывочные растворы или производить обработку растворов кислотой.

В основе процесса биохимической очистки лежит жизнедеятельность некоторых видов микроорганизмов, которые могут использовать органические и минеральные вещества, содержащиеся в сточных водах, в качестве питательных веществ и источников энергии.

Обезвреживание сточных вод систем гидрозолоудаления Количество сточных вод систем ГЗУ во много раз превышает суммарный объем всех остальных загрязненных стоков ТЭС.

Очистка сточных вод сероочистных установок На ряде ТЭС Германии действуют установки по очистке сточных вод, образующихся на стадии осветления суспензии гипса в концентраторах.

Химический состав исходной и очищенной воды после сероочистной установки.

27 июня 1954 г. в СССР, в г. Обнинске Калужской области, была пущена первая в мире атомная электростанция.

В России и других странах мира промышленно освоены в основном энергетические реакторы на тепловых нейтронах со слабообогащенным или природным ураном двух типов водо-водяные энергетические реакторы (ВВЭР), в которых вода является теплоносителем и замедлителем, и канальные энергетические реакторы с графитовым замедлителем и водой в качестве теплоносителя

Радиоактивные вещества, образующиеся при работе АЭС.

Фотонное и нейтронное.Альфа-излучение.

Биологически значимые радионуклиды благородных газов и йода при работе ядерного реактора.

Нормы радиационной безопасности. Системы защит.

Действие ионизирующих излучений на вещество проявляется в ионизации атомов и молекул, входящих в сослав вещества.

Основные дозовые пределы внешнего и внутреннего облучения, мЗв/юд (бэр/год).

Специальные меры защиты следует предпринимать, когда мощность дозы на расстоянии 0,1 м от источника превышает 10-3 мЗв/ч (0,1 бэ.

Увеличение радиационной активности продуктов деления урана при работе реактора можно иллюстрировать следующим примером.

Потенциальные аварийные ситуации на АЭС.

Последствия радиационной аварии

При оценке доз облучения населения в результате аварии на АЭС различают три типа воздействия:1) острое внешнее a- и g-облучение за счет проходящего облака летучих радионуклидов (минуты, часы после выброса);2) острое и подострое внутреннее облучение вследствие радиоактивных выпадений из облака и потребления воды, молока, свежих овощей и другой пищи из загрязненного района (дни, недели после аварии);3) хроническое облучение в результате потребления зерновых и корнеплодов, загрязненных долгоживущими радионуклидами (месяцы, годы после аварии).

Возникающая при этом упругая волна может быть с помощью пьезопреобразователей превращена в электрические сигналы, несущие объективную информацию о дефекте и степени его развития.

Системы автоматизированного контроля в районе АЭС.

Основы политики Минатома России в области обеспечения экологической безопасности и мероприятия по ее реализации

Социально-экономическое развитие общества в ХХ веке, в основном ориентированное на быстрые темпы экономического роста, породило серьезные проблемы в области охраны окружающей природной среды и природопользования. Человечество столкнулось с противоречиями между растущими потребностями в потреблении природных ресурсов и ограниченностью биосферы в обеспечении этих потребностей, в первую очередь с ограниченностью резервов биосферы в части приема и переработки загрязнителей.

В проблематике обеспечения экологической безопасности можно выделить два аспекта: реальное воздействие антропогенных загрязнителей на здоровье населения и состояние окружающей среды; общественное социально-психологическое восприятие загрязнителей различной этиологии.

«Основы экологической политики Минатома России» - основной документ Министерства в области текущей и перспективной деятельности в сфере охраны окружающей среды, а также в смежных вопросах охраны здоровья персонала и населения. Цель его разработки и утверждения -определение краткосрочной и долгосрочной стратегии природоохранной деятельности предприятий Минатома России, разработка и реализация мероприятий, которые реально необходимы для решения накопленных экологических проблем, решения задач сегодняшнего дня, планомерного, поступательного и гармоничного развития отрасли в рамках стратегии устойчивого экономического и общественного развития России.

Во многих случаях, повышение эффективности вложения материально-технических ресурсов в улучшение экологической обстановки на региональном уровне может быть достигнуто не за счет мер по ужесточению ограничений радиационного воздействия, а на иных направлениях (ограничения влияния вредных химических веществ, улучшения общей санитарно-эпидемиологической ситуации, повышения уровня медицинского обслуживания, выполнения специальных социальных программ для отдельных категорий населения и др.). Методологическая база решения таких или аналогичных задач – системный анализ с использованием методов анализа и оценки риска.

Направление работ по совершенствованию нормативно-правовой базы в области обеспечения экологической безопасности и охраны окружающей среды требует комментариев в связи со своей принципиальной важностью. Зачастую неадекватное регламентирование влияния загрязнителей на здоровье и состояние окружающей среды ведет только к нерациональному расходованию средств, ни коим образом не влияя на качество окружающей среды. Примеров можно привести много. И связаны они во многом с ориентацией на западноевропейские стандарты без учета экономических реалий сложившихся в нашем отечестве.

Естественно, что достижение высоких показателей безопасности не означает свертывания работ в области безопасности. Актуальной проблемой в современных условиях является поддержание достигнутого уровня безопасности и повышение эффективности использования ресурсов, направляемых на обеспечение безопасности.

Методы математического моделирования экологических систем

Другое важнейшее понятие – «сложность системы» может быть оценена на двух уровнях: сложность на "структурном уровне", которая определяется числом элементов системы и связей между ними (морфологическая сложность); сложность на "поведенческом уровне" – набор реакций системы на внешние возмущения или степень эволюционной динамики (функциональная сложность).

Структурные свойства систем определяются характером и устойчивостью отношений между элементами. По характеру отношений между элементами структуры делятся на многосвязные и иерархические. Очень трудно найти примеры сложных иерархических систем – все они имеют, как правило, сетевую организацию, когда один и тот же элемент структуры может входить (в зависимости от точки зрения или по определению) в несколько подсистем более высокого уровня. Например, один и тот же вид организмов в зависимости от условий может трактоваться как "хищный" или "нехищный". Различают также детерминированные, стохастические и хаотические структуры. Детерминизм, как и индетерминизм, имеет свою иерархию совершенства. Например, типично вероятностные структуры экосистем на нижнем уровне (особь, группа организмов) претерпевают чисто случайные изменения, но на более высоких уровнях эти изменения становятся целенаправленными за счет естественного отбора и эволюции. Функциональное описание системы, как и морфологическое описание, как правило, иерархично. Для каждого элемента, частной подсистемы и всей системы в целом функциональность задается набором параметров морфологического описания Х (включая воздействия извне),  числовым функционалом Y, оценивающим качество системы, и некоторым математическим оператором детерминированного или стохастического преобразования Y, определяющим зависимость между состоянием входа Х и состоянием выхода Y

Экосистема как объект математического моделирования Любая гидробиологическая система представляет собой сложный, большой, слабо детерминированный и эволюционирующий объект исследования. Экосистемы в значительной мере соответствуют подходу, развиваемому школой И. Пригожина [Пригожин, Стенгерс, 1986], согласно которому в развитии любой системы чередуются периоды, в течение которых ее состояние может быть характеризовано то как "в основном детерминированное", то как "в основном случайное", когда дальнейшее поведение становится в высокой степени неопределенным. Эту гипотезу можно распространить и на пространственную координату, в связи, с чем некоторые участки поверхности могут восприниматься исследователем как нестационарные или "неправильные". Поэтому, вообще говоря, признаки, наблюдаемые нами в экосистеме, связаны с описываемой ими сущностью статистически, принимая во внимание, что детерминистская связь является частным случаем статистической, т.е. связью с вероятностью равной 1.

Дискретность и непрерывность биосферы Достаточным и конструктивным может быть определение основной задачи экологии как задачи о распространении и обилии организмов [Andrewartha, Birch, 1954]. К этому сводятся почти все операции по упорядочиванию гидробиологических объектов и математическому моделированию экологических сообществ разного масштаба и структуры. Однако до сих пор отсутствуют строгие определения таких основополагающих терминов, как «популяция», «сообщество», «обилие» и «биоразнообразие», понятийная размытость которых особенно проявляется на фоне углубления представлений об экосистеме, как пространственно-временном континууме.

Взаимосвязь экосистемы со средой и пределы толерантности воздействий

Например, реакция экосистемы на действие фактора по логистической модели (правее диапазона толерантности) состоит из четырех последовательных фаз:

а) фазы активного сопротивления всей системы за счет внутренних ресурсов,

б) фазы экспоненциального "выбивания" слабых звеньев, когда ресурс, поддерживающий устойчивость экосистемы, исчерпывается,

в) фазы роста адаптационных процессов в системе, противодействующих влиянию фактора,

г)  и, наконец, фазы стабилизации, когда "выжившие" компоненты экосистемы воспринимают установившийся уровень фактора в пределах своего диапазона толерантности

Информационное описание экосистем: показатели, «индексы» и шкалы их измерения "Систематика" экологических показателей Статистическая постановка задачи экологического мониторинга предполагает, что наблюдается некоторое множество экологических состояний. Оно может содержать как различные состояния одного объекта, так и состояния разных объектов, соизмеримых между собой в количественном отношении.

В настоящее время только для мониторинга пресноводных водоемов по зообентосу применяется свыше 60 методик оценки экосистем

В зависимости от того, в каких шкалах измерены данные, репрезентативная теория измерений, основные понятия и применения которой рассматриваются в обзорах [Стивенс, 1960; Орлов, URLа,б], определяет круг возможных арифметических операций над этими числами. Например, имея отметки учащихся как один из видов экспертного оценивания, вряд ли кто-либо будет утверждать, что знания отличника равны сумме знаний двоечника и троечника (хотя 5 = 2 + 3), в то время как в экологических методиках подобные операции в интервальных шкалах – не редкость.

Природа и математическое мышление Идеологической основой технологической цивилизации является Научная Идеология, или Сциентизм (англ. Science). Она основана на вере в существование небольшого числа точно формулируемых законов природы, на основе которых все в природе предсказуемо и манипулируемо. Природа рассматривается как гигантская машина, которой можно управлять, если известен принцип ее функционирования. Эта научная идеология, как заметил еще Э. Мах, часто играет роль религии технологической цивилизации.

Выявлены два основных направления исследований: экосистемное и популяционное. Показано, что при изучении растительных сообществ чаще используется экосистемный подход, а сообществ наземных животных и птиц – популяционный. Сообщества водных организмов служат объектом для обоих подходов. К математическим ключевым словам были отнесены названия статистических характеристик, методов преобразования и обработки данных, пакетов прикладных программ.

В тех случаях, когда установлено постоянное и удовлетворительно точное согласие между математической моделью и опытом, такая модель приобретает практическую ценность. Эта ценность может быть достаточно велика, вне зависимости от того, представляет ли сама модель чисто математический интерес. Итак, сформулируем еще один принцип математического моделирования в экологии: модель должна иметь конкретные цели. Условно такие цели можно подразделить на три основных группы: 1) компактное описание наблюдений; 2) анализ наблюдений (объяснение явлений); 3) предсказание на основе наблюдений (прогнозирование).

Аналитические модели (англ. analytical models) – один из классов математического моделирования, широко используемый в экологии. При построении таких моделей исследователь сознательно отказывается от детального описания экосистемы, оставляя лишь наиболее существенные, с его точки зрения, компоненты и связи между ними, и использует достаточно малое число правдоподобных гипотез о характере взаимодействия компонентов и структуры экосистемы. Аналитические модели служат, в основном, целям выявления, математического описания, анализа и объяснения свойств или наблюдаемых феноменов, присущих максимально широкому кругу экосистем. Так, например, широко известная модель конкуренции Лотки–Вольтерра позволяет указать условия взаимного сосуществования видов в рамках различных сообществ. Попытки моделирования динамики популяций предпринимаются давно. Модель конкуренции (уравнения Лотки–Вольтера, 1925-26 гг.) – классический пример аналитической модели, позволяющей объяснить и проанализировать возможные исходы межвидовой конкуренции. Однако, если модели типа "хищник–жертва" в частных случаях обнаруживали совпадение с данными натурных наблюдений, то значительно хуже обстояло дело с взаимодействием организмов и окружающей среды. Сначала появились частные модели взаимодействия биоты с такими отдельными факторами, как солнечная радиация, температура [Крогиус с соавт., 1969], потом – модели взаимодействия организмов с абстрактными "ресурсами

Эмпирико-статистические модели объединяют в себе практически все биометрические методы первичной обработки экспериментальной информации. Основная цель построения этих моделей состоит в следующем: упорядочение или агрегирование экологической информации; поиск, количественная оценка и содержательная интерпретация причинно-следственных отношений между переменными экосистемы; оценка достоверности и продуктивности различных гипотез о взаимном влиянии наблюдаемых явлений и воздействующих факторов; идентификация параметров расчетных уравнений различного назначения.

Схемы представления результатов статистической обработки для различных критериев и методов анализа Задачи о выборках: анализ распределений, сравнение, поиск зависимостей

Таблицы сопряженности и интервальная математика Математический аппарат, осуществляющий анализ таблиц сопряженности, используется в тех случаях, когда данные, в которых измерены показатели Y и X, представлены в шкале наименований или порядковой шкале В этих случаях любые статистические методы, основанные на параметрических распределениях, оказываются неприменимыми и анализ таблиц сопряженности [Елисеева, Рукавишников, 1977; Аптон, 1982; Енюков, 1986; Флейс, 1989] оказывается практически единственным надежным видом обработки (хотя существуют, например, специальные методы регрессии типа логит- и пробит-анализа или нейросетевой анализ). Наиболее часто используются иерархические классификации [Айвазян с соавт., 1974; Жамбю, 1988], которые могут быть представлены в двух основных формах – дерева (фиг. А рис. 2.3) и вложенного множества (фиг. В). Дерево представляет собой специальный вид направленного графа – структуры, состоящей из узлов, связанных дугами

Оценка качества водных экосистем по многомерным эмпирическим данным

Методы распознавания образов Как отмечалось выше, реальные гидробиологические объекты отличаются друг от друга какими-либо свойствами, но в то же время, многие из них обладают и некоторой общностью, что позволяет объединять объекты в классы. В математической литературе часто используется тождественное «классу» понятие «образа» и многие задачи классификации объединены под названием "проблемы распознавания образов". Наиболее удачно смысл этого термина сформулирован Н.Г. Загоруйко [1972]: «Под образом будем понимать наименование области в пространстве признаков, в которой отображается множество объектов или явлений реального мира».

Классификация методов распознавания образов; области их применения, наличие ограничений и недостатков

Выбор методов многомерного анализа и особенности их реализации

Развитие концепции искусственного интеллекта Современные исследователи экономики, истории, философии и геополитики признают уже как свершившийся факт начало эры "Третьей волны", концепция которой описана и сформулирована в известной книге американского футуролога Э. Тоффлера. Третья волна – зарождение цивилизации, в которой доминирующим ресурсом развития становятся Информация и Знание. В этой связи наступает переосмысление наших взглядов на компьютеры и информационные технологии

Логический подход Основой для логического подхода служит булева алгебра и ее логические операторы (в первую очередь, знакомый всем оператор IF ["если"]). Свое дальнейшее развитие булева алгебра получила в виде исчисления предикатов, в котором она расширена за счет введения предметных символов, отношений между ними, кванторов существования и всеобщности. Практически каждая система ИИ, построенная на логическом принципе, представляет собой машину доказательства теорем. При этом исходные данные хранятся в базе данных в виде аксиом, а правила логического вывода – как отношения между ними.

По своим принципам инвариантного отображения среды многорядные алгоритмы МГУА чрезвычайно близки идеям нейросетевого моделирования, в частности, многослойному персептрону Ф. Розенблатта.

Структурный подход и нейросетевое моделирование Под структурным подходом подразумеваются попытки построения систем ИИ путем моделирования структуры человеческого мозга. В последние десять лет впечатляет феномен взрыва интереса к структурным методам самоорганизации – нейросетевому моделированию, которое успешно применяется в самых различных областях – бизнесе, медицине, технике, геологии, физике, т.е. везде, где нужно решать задачи прогнозирования, классификации или управления

Русские художники