История искусства Экология энергетики Инженерная графика и машиностроительное черчение Математика решение задач и примеров Курс лекций по физике и электротехнике
Основные представления молекулярно-кинетической теории вещества.

Лекции по физике теория газов

Понятие теплоемкости.

Когда одинаковое количество энергии передано телам равной массы, но состоящих из разных веществ, то повышение температуры этих тел неодинаково. Свойство вещества, от которого зависит различие температур тел при нагревании, называют теплоемкостью вещества.

Количество теплоты, необходимое для повышения температуры тела на 10К (10С), является характеристической величиной для данного тела. Эта величина получила название теплоемкости тела.

Теплоемкость тела это физическая величина, равная количеству теплоты, которое необходимо сообщить телу, чтобы изменить его температуру на 10К.

Теплоемкость вещества — теплоемкость единицы массы данного вещества. Единицы измерения — Дж/(кг К).

То есть в других словах, если например удельная теплоемкость воды равняется 4,2 кДж/(кг*К) - это значит, что для того, чтобы нагреть один кг воды на один градус, необходимо передать этому кг воды 4,2 кДж энергии.

Удельная теплоемкость для любого вещества зависит от температуры и агрегатного состояния вещества.

Если продолжать пример с водой, то ее удельная теплоемкость для 0°С равняется 4,218, а при 40°С 4,178 кДж/(кг*К). Для льда теплоемкость еще ниже -- 2,11 кДж/(кг*К) для льда с температурой 0°С.

Удельные теплоемкости многих веществ приведены в справочниках обычно для процесса при постоянном давлении.

Что касается воды, необходимо отметить, что это жидкость с самым высоким значением удельной теплоемкости. Другими словами, чтобы обеспечить заданное количество температуры, вода должна поглотить или отдать количество тепла значительно больше, чем любое другое тело такой же массы.

В связи с этим становится понятным интерес к воде, когда нужно обеспечить искусственный теплообмен.

Теплоемкость и сама зависит от температуры: нагрев тела от 0 до 10С, или от 99 до 1000С, требует различных количеств теплоты.

Если при нагревании тела от Т1 до Т2 оно получило количество теплоты Q, то теплоемкость тела будет численно равна:

  . (1)

Если в состав тела входит только одно вещество, то теплоемкость этого тела пропорциональна его массе: .

Коэффициент пропорциональности с, характеризующий данное вещество, называется его удельной теплоемкостью.

Удельная теплоемкость вещества это физическая величина, численно равная количеству теплоты, необходимому для повышения температуры единицы массы (1 кг) вещества на 10К.

Если при нагревании тела массой  от Т1 до Т2 оно получило количество теплоты Q, то теплоемкость вещества, из которого изготовлено это тело будет численно равна:

   . (2)

Методы молекулярно-кинетической теории применяются при объяснении природы теплоемкости твердого тела. Простейшей моделью кристаллического строения твердого тела является правильно построенная кристаллическая решетка, в узлах которой помещаются атомы, совершающие тепловые колебания около положений равновесия. Передача тепла твердому телу от другого тела или из окружающей среды заставляет эти атомы колебаться быстрее. Энергия колебаний атомов складывается из кинетической и потенциальной.

Значения теплоемкостей колеблются в довольно широких пределах. Кроме того, теплоемкости всех тел, как правило, уменьшаются с падением температуры и при температурах, близких к абсолютному нулю, принимают ничтожно малые значения.

Газовая постоянная универсальная Газовая постоянная универсальная (молярная) (R) фундаментальная физическая константа, входящая в уравнение состояния 1 моля идеального газа: $pv=RT$.

Работой называется такая пеpедача энеpгии, котоpая обусловлена силой. Силы могут иметь pазличное пpоисхождение, поэтому и pабота в теpмодинамике может быть pазличной по своей физической пpиpоде.

Работа численно равна площади под графиком процесса на диаграмме (p, V). Величина работы зависит от того, каким путем совершался переход из начального состояния в конечное.

Обратимые и необратимые процессы Процессы, изображенные на рис. 3.8.2, можно провести и в обратном направлении; тогда работа A просто изменит знак на противоположный.

Первый закон термодинамики На рис.  условно изображены энергетические потоки между выделенной термодинамической системой и окружающими телами.

Изохорный процесс В изохорном процессе (V = const) газ работы не совершает, A = 0. Следовательно, Q = ΔU = U(T2) – U(T1).

Параметры состояния системы могут изменяться. Любое изменение в термодинамической системе, связанное с изменением хотя бы одного из ее термодинамических параметров, называется термодинамическим процессом. Макроскопическая система находится в термодинамическом равновесии, если ее состояние с течением времени не меняется (предполагается, что внешние условия рассматриваемой системы при этом не изменяются).
Изотермический процесс