Степенная функция Графические методы решения задач

История искусства
Живопись Франции
Живопись Испания
Курбе и реализм
Промышленная архитектура и
эстетика века машин
Архитектура во время перемен
Русские художники начала 20 века
Василий Васильевич Кандинский
Баухаус
Архитектура Москвы
История абстрактного искусства
Импрессионизм
художественная школа
Новая техника живописи
выставки импрессионистов
Импрессионисты и символисты
Ван Гог
Гоген Поль Дега Эдгар
Мане Эдуард Моне Клод
Революция соборов
Энергетика
Экология энергетики
Анализ работы электрофильтров
Регенеративные методы
Ядерное топливо
Математическое моделирование экологических систем
Ядерные топливные циклы
Графика
Выполнение графических работ
Машиностроительное черчение
Инженерная графика
Изучаем ArchiCAD
Строительное проектирование
Трехмерная проекция
Maya 3D
Трехмерное объектно-ориентированное
программное обеспечение CAD
Математика решение задач
Функция нескольких переменных
Интеграл Типовые задачи
Системы линейных уравнений
Предел функции
Производная и дифференциал
Неопределенный интеграл
Теория вероятности
Математика примеры решения задач
Обыкновенные дифференциальные
уравнения
Функция комплексной переменной
Дифференциальное исчисление
Элементы линейной алгебры
Пределы и непрерывность функции
Векторная алгебра
Математический анализ
Исследование функций
аналитическая геометрия
Числовые последовательности
Графические методы решения задач
Информатика
Диспетчер доступа
Межсетевое экранирование
Центральный процессор
персонального компьютера
История развития ПК
Сетевые службы Active Directory
Дополнительные сетевые службы
Физика решение задач
Квантовая и атомная физика
Решение задач по физике примеры
Курс лекций по физике
Расчет электрических цепей.
Исследование линейной цепи
Линейные электрические цепи
Методика расчёта электрических цепей
Физика Кинематика
примеры решения задач
Лекции по физике теория газов

Степенная функция с натуральным показателем непрерывна на множестве действительных чисел. Если n нечетное, то эта функция строго возрастает и потому обратима. Обратной к ней является функция Степенная функция с четным показателем необратима

В природе и жизни человека встречается большое количество процессов, в которых некоторые величины изменяются так, что их отношение данной величины через равные промежутки времени не зависит от времени. Среди таковых можно назвать радиоактивный распад веществ, рост суммы на счету в банке и др. Все эти процессы описываются показательной функцией.

На промежутке (0; +∞) определена функция, обратная к a x ( a  > 0, a  ≠ 1). Эта функция называется логарифмической : y  = log a   x

Функция называется гиперболическим синусом . Функция называется гиперболическим косинусом .

Подобно тому, как тригонометрические синус и косинус являются координатами точки на координатной окружности, гиперболические синус и косинус являются координатами точки на гиперболе.

Графические методы решения задач Математика примеры решения задач

Решение неравенств Пусть задано неравенство f  ( x ) > 0 (очевидно, что все неравенства вида h  ( x ) >  g  ( x ) сводятся к рассматриваемому переносом функции g  ( x ) в левую часть). Его решением является совокупность всех точек числовой оси, удовлетворяющих данному неравенству. Решение систем уравнений и неравенств

Система уравнений с двумя переменными.

Пусть задана система уравнений Ее решением является совокупность пар чисел ( x i ;  y i ), подстановка которых в каждое из уравнений превращает его в верное равенство. Построим на координатной плоскости кривые, задаваемые уравнениями f  ( x ,  y ) = 0 и g  ( x ,  y ) = 0. Тогда можно сказать, что геометрически решением системы уравнений является совокупность всех точек M i ( x i ;  y i ), в которых пересекаются кривые, задаваемые этими уравнениями.

Поскольку каждая геометрическая фигура состоит из точек, можно говорить о точках, принадлежащих геометрической фигуре (то есть о точках, из которых она состоит) и не принадлежащих ей. Для обозначения точек будем использовать заглавные буквы латинского алфавита: A , B , ..., Z , а для обозначения прямой – строчные буквы: a , b , ..., z . Кроме того будем использовать обозначение ( AB ) для прямой, проходящей через две заданные точки A и B Общей точкой прямых a и b называется точка, лежащая на прямой a и одновременно на прямой b . Можно, например, представить две прямые, которые имеют ровно одну общую точку. Такие две прямые называются пересекающимися. Отрезком называется часть прямой, которая содержит две разные точки A и B  этой прямой ( концы отрезка ) и все точки прямой, которые лежат между ними ( внутренние точки отрезка ).

Углом называется фигура, состоящая из точки ( вершина угла ) и двух различных лучей с началами в этой точке – сторон угла

Различные виды углов Два угла называются смежными , если у них одна сторона общая, а другие стороны являются дополнительными лучами.

Параллельные прямые Две прямые называются параллельными , если они не пересекаются. Cледующая теорема дает достаточные условия параллельности (т.е. условия, выполнение которых гарантирует параллельность) двух прямых. Иначе такую теорему можно назвать признаком параллельности прямых

Две прямые, параллельные третьей, параллельны. Это свойство называется транзитивностью параллельности прямых.

Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, соединяющих эти точки попарно. Точки называются вершинами , а отрезки – сторонами треугольника.

Признаки равенства треугольников Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Треугольник называется равнобедренным , если у него две стороны равны. Эти стороны называются боковыми , а третья сторона – основанием . Сумма углов треугольника Треугольник называется прямоугольным , если у него есть прямой угол. Пропорциональные отрезки и средняя линия треугольника Аксиомы позволяли приписывать отрезкам и углам числа, равные их мерам, то есть измерять отрезки и углы. До сих пор не было связи между величинами углов и длинами отрезков. С введением треугольников появляется возможность связать величины градусных мер углов треугольника и длин его сторон. Рассмотрим соотношения между сторонами и углами прямоугольного треугольника . Соотношения между сторонами и углами произвольного треугольника

Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов, т.е. Треугольник имеет шесть основных элементов: три угла A , B , C и три стороны a , b , c . Решить треугольник – значит найти все эти шесть элементов. Обычно даны три элемента, среди которых хотя бы один линейный

Окружностью называется геометрическая фигура, которая состоит из всех точек плоскости, равноудаленных от данной точки плоскости. Эта точка называется центром окружности . Отрезок, соединяющий любую точку окружности с ее центром, а также его длина, называется радиусом окружности. Центральным углом в окружности называется плоский угол с вершиной в ее центре. Дугой окружности , соответствующей центральному углу, называется часть окружности, расположенная внутри центрального угла.

Градусной мерой дуги окружности называется градусная мера соответствующего центрального угла. Угол называется вписанным в окружность, если вершина его лежит на окружности, а стороны пересекают окружность. Говорят, что вписанный угол опирается на ту дугу окружности , которая не содержит вершину вписанного угла. Так же говорят, что вписанный угол опирается на хорду, соединяющую точки пересечения окружности со сторонами угла.

Четырехугольником называется фигура, которая состоит из четырех точек, называемых вершинами, и четырех соединяющих их отрезков – сторон. Параллелограммом называется четырехугольник, у которого противолежащие стороны попарно параллельны. Высотой параллелограмма , проведенной к данной его стороне, называется перпендикуляр, опущенный из произвольной точки противолежащей стороны к прямой, содержащей данную сторону.

Две прямые в пространстве называются параллельными , если они лежат в одной плоскости и не имеют общих точек. Если две прямые a и b параллельны, то, как и в планиметрии, пишут a  ||  b . В пространстве прямые могут быть размещены так, что они не пересекаются и не параллельны. Этот случай является особым для стереометрии. Две плоскости называются параллельными , если они не имеют общих точек.

Центральный процессор персонального компьютера Импорт файлов ArchiCAD