История искусства Экология энергетики Инженерная графика и машиностроительное черчение Математика решение задач и примеров Курс лекций по физике и электротехнике
Числовые последовательности

Математика примеры решения задач

В пособии дано обобщающее изложение материала школьной программы по математике, имеющего отношение к логарифму числа: преобразование алгебраических выражений, содержащих логарифм, показательные уравнения и неравенства, логарифмические уравнения и неравенства, нахождение области определения функции.

Для того, чтобы кривая на декартовой координатной плоскости была графиком функции, необходимо и достаточно, чтобы всякая прямая, параллельная оси ординат, либо не пересекалась с этой линией, либо пересекала ее в одной точке. Согласно этому определению окружность, например, не может быть графиком никакой функции, так как некоторым значениям x точек, принадлежащих этой кривой (например, абсциссе центра окружности), соответствуют два значения y .

Число a называется нулем функции f  ( x ), если f  ( a ) = 0.

График функции пересекает ось абсцисс в точках с абциссами, равными нулям функций.

Эскиз графика может быть построен выбором на оси OX нескольких значений аргументов x i , построением точек ( x i ,  f  ( x i )) и соединением этих точек линиями. Если графиком функции является достаточно плавная кривая, то, соединяя полученные точки гладкой линией, мы получим эскиз искомого графика.

Рисунок 1.3.1.1. Существуют функции, графики которых состоят из нескольких участков. К таковым, например, относится функция y  = sign ( x ). График функции y  = [ x ], где скобки означают взятие целой части числа, состоит из бесконечного количества отрезков. Наконец, ряд графиков функций не содержит ни одной «непрерывной» части. К таковым относится, например, числовая последовательность, которую можно определить как числовую функцию на множестве натуральных чисел

Эскиз графика строится по нескольким точкам; линия эскиза графика на чертеже всегда конечной толщины (в то время как в математике линия графика считается бесконечно тонкой). Все это приводит к тому, что узнать значение функции по графику можно лишь приближенно. Тем не менее график является удобным средством для исследования функции и во многих случаях используется, чтобы визуально представить ход изменения функции.

В лекции дается определение числовой последовательности и её предела Вводится понятие сходимости последовательности. Рассматриваются основные свойства пределов. Вводятся и рассматриваются на примерах понятия бесконечно малой, бесконечно большой, возрастающей, убывающей и фундаментальной последовательностей
Учебник Основы теории изображения фигур на плоскости