Дифференциальное исчисление функции одной переменной

История искусства
Живопись Франции
Живопись Испания
Курбе и реализм
Промышленная архитектура и
эстетика века машин
Архитектура во время перемен
Русские художники начала 20 века
Василий Васильевич Кандинский
Баухаус
Архитектура Москвы
История абстрактного искусства
Импрессионизм
художественная школа
Новая техника живописи
выставки импрессионистов
Импрессионисты и символисты
Ван Гог
Гоген Поль Дега Эдгар
Мане Эдуард Моне Клод
Революция соборов
Энергетика
Экология энергетики
Анализ работы электрофильтров
Регенеративные методы
Ядерное топливо
Математическое моделирование экологических систем
Ядерные топливные циклы
Графика
Выполнение графических работ
Машиностроительное черчение
Инженерная графика
Изучаем ArchiCAD
Строительное проектирование
Трехмерная проекция
Maya 3D
Трехмерное объектно-ориентированное
программное обеспечение CAD
Математика решение задач
Функция нескольких переменных
Интеграл Типовые задачи
Системы линейных уравнений
Предел функции
Производная и дифференциал
Неопределенный интеграл
Теория вероятности
Математика примеры решения задач
Обыкновенные дифференциальные
уравнения
Функция комплексной переменной
Дифференциальное исчисление
Элементы линейной алгебры
Пределы и непрерывность функции
Векторная алгебра
Математический анализ
Исследование функций
аналитическая геометрия
Числовые последовательности
Графические методы решения задач
Информатика
Диспетчер доступа
Межсетевое экранирование
Центральный процессор
персонального компьютера
История развития ПК
Сетевые службы Active Directory
Дополнительные сетевые службы
Физика решение задач
Квантовая и атомная физика
Решение задач по физике примеры
Курс лекций по физике
Расчет электрических цепей.
Исследование линейной цепи
Линейные электрические цепи
Методика расчёта электрических цепей
Физика Кинематика
примеры решения задач
Лекции по физике теория газов

Производная Основные понятия Пусть дана функция y = f(x). Рассмотрим два значения ее аргумента: исходное х0 и новое х. Разности = х-х0 и D y = f(x)-f(x0) = y-y0 называются соответственно приращением аргумента и приращением функции в точке х0. Теорема ( о связи дифференцируемости и непрерывности). Если функция у = f(x) дифференцируема в точке х0, то она непрерывна в этой точке.

Вычисление производной Формулы вычисления производной некоторых элементарных функций получены в курсе средней школы

Производная обратной функции Теорема. Пусть функция х = f(y) монотонна и дифференцируема в некотором интервале (a, b) и имеет в точке у этого интервала производную f'(y), не равную нулю. Примеры. Найти производную функции.

Производная степенной функции с любым действительным показателем Известно, что (xn)' = nxn-1 для натурального n. Пусть теперь n любое дейст­вительное число и х>0. Справедливо тождество xn = enlnx. Тогда у = enlnx – сложная функция и ее производная вычисляется следующим образом: y' = (enlnx)' = enlnx(nlnx)' = enlnx =  xn = nxn-1. Использование понятия неопределенного интеграла в экономике

Производные высших порядков Предположим, что функция y = f(x) дифференцируема в некотором интер­вале (а, в). Тогда ее производная f'(x) в этом интервале является функцией х. Пусть эта функция также имеет производную в (а, в). Эта производная называется второй производной или производной второго порядка функции y = f(x)и обозначается y'' или f''(x).

Дифференцирование функций, заданных параметрически Если функция y = f(x), определенная на некотором интервале (а,в), такая, что уравнение (1) при подстановке в него вместо у выражения f(x) обращается в тождество, то говорят, что уравнение (1) задает функцию y = f(x) неявно или что функция y = f(x) есть неявная функция. Математика Функции и их графики Пределы

Дифференцирование функций, заданных неявно Если функция y = f(x), определенная на некотором интервале (а,в), такая, что уравнение (1) при подстановке в него вместо у выражения f(x) обращается в тождество, то говорят, что уравнение (1) задает функцию y = f(x) неявно или что функция y = f(x) есть неявная функция. Пример

Логарифмическое дифференцирование Функция вида y = [u(x)]v(x) называется степенно – показательной. Для вычисления ее производной (при условии, что у' существует), нужно прологарифмировать функцию по любому основанию (обычно по основанию е). Затем нужно вычислить производную полученной неявной функции.

Дифференциал функции Рассмотрим функцию у = х3. Дадим некоторому значению аргумента х ¹ 0 приращение ¹ 0, тогда функция получит соответствующее приращение Dу. Вычислим его.

Теорема о связи между существованием производной и существованием дифференциала. Для того, чтобы функция y = f(x) имела в точке х дифференциал, необходимо и достаточно, чтобы она имела в этой точке производную.

Свойства дифференциала Это свойство дифференциала сложной функции называется инвариантностью формы дифференциала.

Дифференциалы высших порядков Дифференциал от дифференциала данной функции y = f(x) называется ее вторым дифференциалом или дифференциалом второго порядка и обозначается символом d2у или d2 f(x). Таким образом, по определению d2у = d().

Некоторые теоремы о дифференцируемых функциях

Теорема Ферма Пусть функция y = f(x) определена в интервале (а, в) и принимает в точке с этого интервала наибольшее или наименьшее на (а, в) значение. Если существует f'(с), то f'(с) = 0.

Теорема Лагранжа  Пусть функция y=f(x) непрерывна на отрезке [a, b] и дифференцируема в интервале (a, b). Тогда существует хотя бы одна точка сÎ(a, b), для которой выполняется условие: .

Теорема Коши

Теорема Лопиталя (Правило Лопиталя) Пусть - функции, непрерывные на [а, b], дифференцируемые в(а, b);  при всех хb) и f(а) = (а) = 0. Примеры на применение правила Лопиталя.

Применение производной к исследованию функций

Интервалы монотонности. Экстремумы Функция у = f(х) называется возрастающей (убывающей) на некотором промежутке, если для любых значений x2>x1 этого промежутка выполняется условие f(x2) > f(x1)(f(x2) < f(x1)) . Теорема ( достаточное условие монотонности функции). Если непрерывная на отрезке [а, b] функция у = f(х) в каждой точке интервала (а, b) имеет положи­тельную (отрицательную) производную, то эта функция возрастает (убывает) на отрезке [а, b].

Выпуклость и вогнутость графика функции

Точки перегиба График дифференцируемой функции у = f(x) называется выпуклым (вогнутым) в интервале (а,b), если он расположен ниже (выше) любой своей касательной на этом интервале. Теорема ( достаточный признак существования точки перегиба). Если вторая производная непрерывной функции меняет знак при переходе аргумента через точку х0, то точка (х0; f(х0)) является точкой перегиба графика функции. Асимптотой графика функции у = f(x) называется прямая, расстояние от которой до текущей точки графика функции стремится к нулю при неограниченном удалении этой точки от начала координат.

План исследования функции и построение графика

Пример . Исследовать функцию y= x-2arctgx и построить ее график.

Пример . Исследовать функцию и построить ее график.

Русские художники