История искусства Экология энергетики Инженерная графика и машиностроительное черчение Математика решение задач и примеров Курс лекций по физике и электротехнике
Пределы и непрерывность функции Векторная алгебра

Математика примеры решения задач контрольной работы

Теорема Лагранжа

  Пусть функция y=f(x) непрерывна на отрезке [a, b] и дифференцируема в интервале (a, b). Тогда существует хотя бы одна точка сÎ(a, b), для которой выполняется условие: .

Доказательство. Составим уравнение хорды АВ, соединяющей точки графика функции A(a; f(a)) и B(b; f(b)):

.

Отсюда ордината хорды у=. Рассмотрим функцию . Функция F(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (a, b), так как функция f(x) непрерывна на [a, b] и дифференцируема на интервале (a,b).   . Таким образом, функция F(x) удовлетворяет всем условиям теоремы Ролля. Поэтому существует такая точка сÎ(a, b), что , откуда получаем утверждение теоремы. Геометрически теорема Лагранжа означает, что существует хотя бы одна точка сÎ (а, b) такая, что касательная, проведенная к графику функции в точке (с; f (с)), параллельна хорде АВ.

Так как определения предела и непрерывности для функции нескольких переменных практически совпадает с соответствующими определениями для функции одной переменной, то для функций нескольких переменных сохраняются все свойства пределов и непрерывных функций
Учебник Высшая математика примеры решения задач