Векторная алгебра и аналитическая геометрия

История искусства
Живопись Франции
Живопись Испания
Курбе и реализм
Промышленная архитектура и
эстетика века машин
Архитектура во время перемен
Русские художники начала 20 века
Василий Васильевич Кандинский
Баухаус
Архитектура Москвы
История абстрактного искусства
Импрессионизм
художественная школа
Новая техника живописи
выставки импрессионистов
Импрессионисты и символисты
Ван Гог
Гоген Поль Дега Эдгар
Мане Эдуард Моне Клод
Революция соборов
Энергетика
Экология энергетики
Анализ работы электрофильтров
Регенеративные методы
Ядерное топливо
Математическое моделирование экологических систем
Ядерные топливные циклы
Графика
Выполнение графических работ
Машиностроительное черчение
Инженерная графика
Изучаем ArchiCAD
Строительное проектирование
Трехмерная проекция
Maya 3D
Трехмерное объектно-ориентированное
программное обеспечение CAD
Математика решение задач
Функция нескольких переменных
Интеграл Типовые задачи
Системы линейных уравнений
Предел функции
Производная и дифференциал
Неопределенный интеграл
Теория вероятности
Математика примеры решения задач
Обыкновенные дифференциальные
уравнения
Функция комплексной переменной
Дифференциальное исчисление
Элементы линейной алгебры
Пределы и непрерывность функции
Векторная алгебра
Математический анализ
Исследование функций
аналитическая геометрия
Числовые последовательности
Графические методы решения задач
Информатика
Диспетчер доступа
Межсетевое экранирование
Центральный процессор
персонального компьютера
История развития ПК
Сетевые службы Active Directory
Дополнительные сетевые службы
Физика решение задач
Квантовая и атомная физика
Решение задач по физике примеры
Курс лекций по физике
Расчет электрических цепей.
Исследование линейной цепи
Линейные электрические цепи
Методика расчёта электрических цепей
Физика Кинематика
примеры решения задач
Лекции по физике теория газов

Векторная алгебра и аналитическая геометрия

Векторы. Основные понятия Вектором называется направленный отрезок. Обозначается вектор , , , , AB , a (А – начало вектора, В – его конец). Линейные операции над векторами Линейными операциями называют операции сложения и вычитания векторов и умножения вектора на число. Вычитание векторов. Разностью векторов и называется такой вектор , который в сумме с вектором дает вектор : Û .

Умножение вектора на число. Произведением вектора на действительное число называется вектор (обозначают ), определяемый следующими условиями: 1)      , 2)      при и при .

Проекция вектора на ось Углом между двумя ненулевыми векторами и называется наименьший угол ( ), на который надо повернуть один из векторов до его совпадения со вторым. Предварительно нужно привести векторы к общему началу О

Пример . При каком условии ?

Координаты вектора Рассмотрим декартову прямоугольную систему координат Oxyz. Обозначим , , – единичные векторы, направленные соответственно вдоль осей Ox, Oy, Oz (орты осей). Эти векторы называются декартовым прямоугольным базисом в пространстве. Метод интегрирования подстановкой (заменой переменной)

Направляющие косинусы вектора Направление вектора в пространстве определяется углами , которые вектор образует с осями координат. Косинусы этих углов называются направляющими косинусами вектора: , , .

Деление отрезка в данном отношении

Пример. Даны вершины треугольника , , . Найти точку пересечения медиан этого треугольника и орт вектора

Пример. Показать, что точки , , лежат на одной прямой, причем A – между B и C.

Скалярное произведение векторов Скалярным произведением двух векторов (обозначается или ) называется число, равное произведению длин этих векторов на косинус угла между ними: , где .

Пример. Найти угол между диагоналями параллелограмма, построенного на векторах и .

Смешанное произведение векторов Смешанным, или векторно-скалярным произведением трех векторов (обозначается ) называется произведение вида .

Теорема. Для того чтобы три вектора были компланарны, необходимо и достаточно, чтобы их смешанное произведение равнялось нулю.

Прямая на плоскости Пусть – заданная точка на прямой , – вектор, перпендикулярный прямой , его называют нормальным вектором прямой, и пусть – произвольная точка прямой . Пусть – заданная точка на прямой , – вектор, параллельный прямой, его называют направляющим вектором прямой, и пусть – произвольная точка прямой Пусть заданная точка на прямой , – угол наклона прямой к оси ,

Угол между двумя прямыми. Пусть прямые и заданы соответственно уравнениями , , где ,

Расстояние от точки до прямой. Пусть прямая на плоскости задана уравнением и точка имеет координаты

Пример. Прямая задана уравнением . Составить уравнения а) прямой , проходящей через точку параллельно прямой ; б) прямой , проходящей через начало координат перпендикулярно прямой .

Пример. В треугольнике с вершинами , , составить уравнения медианы , высоты , найти длину высоты

Кривые второго порядка Кривой второго порядка называется линия, определяемая уравнением второй степени относительно текущих декартовых координат х, у Уравнение содержит только четные степени х, у, следовательно, кривая симметрична относительно осей координат.

Гиперболой называется множество всех точек плоскости, для каждой из которых модуль разности расстояний до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, меньшая, чем расстояние между фокусами.

Полагая в каноническом уравнении у = 0, найдем точки пересечения гиперболы с осью ОХ: х = ±а. При х = 0 уравнение не имеет решений, то есть с осью ОУ гипербола не пересекается. Точки А1(-а; 0) и А2(а; 0) называются вершинами гиперболы. Фокальная ось (ось, на которой лежат фокусы) называется действительной осью гиперболы, а перпендикулярная ей ось – мнимой осью.

Из симметрии гиперболы относительно осей координат следует, что этим же свойством обладает прямая Прямые и называются асимптотами гиперболы.

Параболой называется множество всех точек плоскости, равноудаленных от данной точки, называемой фокусом, и данной прямой, называемой директрисой.

Уравнение содержит у лишь в четной степени, следовательно, кривая симметрична относительно оси ОХ. При х = 0 у = 0, то есть парабола проходит через начало координат.

Общее уравнение кривой второго порядка имеет вид  

Уравнение такого вида может определять: 1) эллипс (в частности, окружность), 2) гиперболу, 3) параболу, 4) пару прямых (параллельных, пересекающихся либо совпадающих), 5) точку или не определять никакой линии.

Полярная система координат на плоскости определяется заданием некоторой точки О, называемой полюсом, луча Ор, исходящего из этой точки и называемого полярной осью, и единицы масштаба

Пример. Построить в полярной системе координат точки

Пример. Дано полярное уравнение линии Построить эту линию по точкам. Найти ее декартово уравнение, расположив систему Охy

Пример. Найти полярное уравнение окружности

Неполные уравнения плоскостей Если в уравнении плоскости какие-либо из коэффициентов равны нулю, то получится неполное уравнение плоскости.

Прямая в пространстве Прямую в пространстве можно задать уравнениями, аналогичными уравнениям прямой на плоскости

Пример. Записать канонические уравнения прямой, заданной общими уравнениями

Взаимное расположение прямой и плоскости

Пусть требуется найти точку пересечения прямой и плоскости

Пример. Показать, что прямая лежит в плоскости

Поверхности второго порядка

Цилиндрической поверхностью называется поверхность, составленная из всех прямых, пересекающих данную линию L и параллельных данной прямой . Линия L при этом называется направляющей цилиндрической поверхности, а каждая из прямых, составляющих поверхность и параллельных прямой , – ее образующей

Уравнение определяет гиперболический цилиндр. Его направляющая – гипербола, лежащая в плоскости Оуz, образующие параллельны оси Ох

Конической поверхностью называется поверхность, составленная из всех прямых, пересекающих данную линию L и проходящих через данную точку Р. Линия L при этом называется направляющей конической поверхности, точка Р – ее вершиной, а каждая из прямых, составляющих коническую поверхность, – ее образующей

Эллипсоидом называется поверхность, которая в некоторой декартовой прямоугольной системе координат определяется уравнением Это замкнутая овальная поверхность, симметричная каждой из координатных плоскостей

Двуполостным гиперболоидом называется поверхность, которая в некоторой декартовой прямоугольной системе координат определяется уравнением

Русские художники