История искусства Экология энергетики Инженерная графика и машиностроительное черчение Математика решение задач и примеров Курс лекций по физике и электротехнике
Пределы и непрерывность функции Векторная алгебра

Математика примеры решения задач контрольной работы

Полагая в каноническом уравнении у = 0, найдем точки пересечения гиперболы с осью ОХ: х = ±а. При х = 0 уравнение не имеет решений, то есть с осью ОУ гипербола не пересекается. Точки А1(-а; 0) и А2(а; 0) называются вершинами гиперболы. Фокальная ось (ось, на которой лежат фокусы) называется действительной осью гиперболы, а перпендикулярная ей ось – мнимой осью. Действительной осью называется также отрезок А1А2 и его длина 2а. Отрезок, соединяющий точки В1(0; -в) и В2(0; в), а также его длина 2в называются мнимой осью гиперболы. Числа а и в называются соответственно действительной и мнимой полуосями.

Отношение  называется эксцентриситетом гиперболы. e > 1.

Эксцентриситет характеризует форму гиперболы: чем меньше эксцентриситет, тем меньше отношение полуосей гиперболы, то есть тем сильнее вытянут ее основной прямоугольник относительно фокальной оси

Рассмотрим часть гиперболы, расположенную в первой четверти:  Покажем, что точки этого графика, расположенные на достаточно большом расстоянии от начала координат, сколь угодно близки к прямой  Пусть М(х, у) и N(х, У) – точки с одной и той же абсциссой, лежащие соответственно на гиперболе и на прямой  (рис. 31). Рассмотрим разность ординат этих точек: Интегральное исчисление

 

Рис. 31

 

Очевидно, что при неограниченном возрастании х эта разность стремится к нулю, то есть точки М и N неограниченно сближаются.

В дальнейшем курсе математики понятие предела будет играть фундаментальную роль, так как с ним непосредственно связаны основные понятия математического анализа – производная, интеграл и др.
Учебник Инженерная графика Высшая математика