История искусства Экология энергетики Инженерная графика и машиностроительное черчение Математика решение задач и примеров Курс лекций по физике и электротехнике
Пределы и непрерывность функции Векторная алгебра

Математика примеры решения задач контрольной работы

Пример. Дано полярное уравнение линии  Построить эту линию по точкам. Найти ее декартово уравнение, расположив систему Охy так, как показано на рис.40

Решение. Выражение в правой части имеет смысл при sin2j ³ 0, то есть  и  Учитывая периодичность функции (период Т = p), достаточно рассмотреть  Составим таблицу значений функции, ограничиваясь точностью 0,01:

j

0

0

2,12

2,79

3

2,79

2,12

0

Проведем лучи, соответствующие выбранным значениям j, и на каждом из них отложим вычисленное значение r. Полученные точки соединим плавной кривой (рис. 42). Построенная линия называется лемнискатой Бернулли. Чтобы перейти к декартовым координатам, запишем уравнение в виде  и воспользуемся формулами (2.26) и (2.27):      – уравнение линии в декартовой системе координат. Математика лекции и задачи Интегрирование выражений, содержащих квадратный трехчлен. Основные идеи заключаются в выделении в квадратном трехчлене полного квадрата и в проведении линейной замены, позволяющей свести исходный интеграл к табличным вида

Рис. 42

Предел функции Пусть функция y=f(x) определена в некоторой окрестности точки a. Предположим, что независимая переменная x неограниченно приближается к числу a. Это означает, что мы можем придавать х значения сколь угодно близкие к a, но не равные a.
Учебник Инженерная графика Высшая математика