Линейные электрические цепи Курсовая ТОЭ

История искусства
Живопись Франции
Живопись Испания
Курбе и реализм
Промышленная архитектура и
эстетика века машин
Архитектура во время перемен
Русские художники начала 20 века
Василий Васильевич Кандинский
Баухаус
Архитектура Москвы
История абстрактного искусства
Импрессионизм
художественная школа
Новая техника живописи
выставки импрессионистов
Импрессионисты и символисты
Ван Гог
Гоген Поль Дега Эдгар
Мане Эдуард Моне Клод
Революция соборов
Энергетика
Экология энергетики
Анализ работы электрофильтров
Регенеративные методы
Ядерное топливо
Математическое моделирование экологических систем
Ядерные топливные циклы
Графика
Выполнение графических работ
Машиностроительное черчение
Инженерная графика
Изучаем ArchiCAD
Строительное проектирование
Трехмерная проекция
Maya 3D
Трехмерное объектно-ориентированное
программное обеспечение CAD
Математика решение задач
Функция нескольких переменных
Интеграл Типовые задачи
Системы линейных уравнений
Предел функции
Производная и дифференциал
Неопределенный интеграл
Теория вероятности
Математика примеры решения задач
Обыкновенные дифференциальные
уравнения
Функция комплексной переменной
Дифференциальное исчисление
Элементы линейной алгебры
Пределы и непрерывность функции
Векторная алгебра
Математический анализ
Исследование функций
аналитическая геометрия
Числовые последовательности
Графические методы решения задач
Информатика
Диспетчер доступа
Межсетевое экранирование
Центральный процессор
персонального компьютера
История развития ПК
Сетевые службы Active Directory
Дополнительные сетевые службы
Физика решение задач
Квантовая и атомная физика
Решение задач по физике примеры
Курс лекций по физике
Расчет электрических цепей.
Исследование линейной цепи
Линейные электрические цепи
Методика расчёта электрических цепей
Физика Кинематика
примеры решения задач
Лекции по физике теория газов

Линейные электрические цепи Физические законы в электротехнике

Электромагнитное поле

Электромагнитное поле представляет собой особый вид материи. Как вид материи оно обладает массой, энергией, количеством движения, может превращаться в вещество и наоборот.

Электромагнитное поле имеет две составляющие - электрическую и магнитную - и в каждой точке пространства определяется двумя векторными величинами:

а) вектором напряженности электрического поля `Е [ В/м],

б) вектором напряженности магнитного поля `Н [А/м].

Электрический ток. 1-й закон Кирхгофа

Из физики известно о существовании трех родов электрического тока:  проводимости, переноса и смещения.

Электрическим током проводимости называется направленное движение свободных зарядов qсв, какими являются электроны в металлах, положительные и отрицательные ионы в электролитах :

Ток проводимости связан с плотностью тока уравнением:

Электрическое напряжение 2-ой закон Кирхгофа

Пусть в электрическом поле `Е  заряд q перемещается из точки “a” в точку “b” по некоторой произвольной траектории (рис . 3)


 

Работа сил по перемещению заряда q из точки “a” в точку “b”:

где `Е - напряженность электрического поля [ B/м]

Электрическим напряжением называется физическая величина, равная отношению работы по перемещению заряда из одной точки (а) в другую (b) к величине этого заряда: 

  [B]

Энергетический баланс в электрической цепи

Энергия от источника переносится приемнику электромагнитным полем со скоростью распространения волны. Для воздушных линий электропередачи эта скорость близка к скорости света с=300000 км/с, для кабельных линий она чуть меньше . Таким образом, электромагнитная волна за единицу времени  (1 сек) многократно пробегает путь от источника энергии до приемника.

Согласно закону сохранения энергии в любой электрической цепи за любой промежуток времени T должен выполняться баланс между генерируемой и потребляемой энергией: åWист=åWпр. Количество энергии, за единицу времени (1сек), называется мощностью, следовательно, в любой цепи существует баланс между мощностью источников и приемников: åРист=åРпр.

В любой энергосистеме, состоящей из электростанций, линий электропередачи и потребителей электроэнергии в любой момент времени существует динамическое равновесие между суммарными мощностями источников и приемников электрической энергии, при этом источники энергии должны постоянно приспосабливаться к изменяющимся запросам потребителя. Электростанции в энергосистеме работают без промежуточного склада готовой продукции!

При расчете режима электрической цепи она представляется некоторой условной схемой или схемой замещения, состоящей из комбинации идеальных схемных элементов. Каждый идеальный схемный элемент отображает на схеме один из физических процессов. Таких схемных элементов всего 5.

1) Идеальный источник напряжения (ЭДС) Е - это схемный элемент, который генерирует на своих выводах постоянную по величине ЭДС (Е=const), не зависящую от тока, имеет символьное обозначение, показанное на рис. 5а, характеризуется напряжением [В].

2) Идеальный источник тока J-это схемный элемент, который генерирует в цепи постоянный по величине ток (J=const), не зависящий от напряжения на его зажимах, имеет символьное обозначение, показанное на рис. 5б, характеризуется током [A]. 

3) Идеальный резистор R – это схемный элемент, в котором происходит только процесс преобразования электрической энергии в другие виды, имеет символьное обозначение, показанное на рис. 5в, характеризуется сопротивлением [Ом].

Теоремы и методы расчета сложных резистивных цепей

Узлом электрической цепи (схемы) называется точка, в которой сходятся не менее трех ветвей.

Ветвью электрической цепи (схемы) называется участок, состоящий из последовательно включенных элементов, расположенных между двумя смежными узлами.

Сложной называется электрическая цепь (схема), содержащая не менее двух узлов, не менее трех ветвей и не менее двух источников энергии в разных ветвях.

В сложной электрической цепи наблюдаются одновременно в той или иной мере разнородные физические процессы, а именно, процесс генерирования электрической энергии, процесс преобразования электрической энергии в другие виды и процесс обмена энергией между магнитным полем, электрическим полем и источниками энергии. В общем случае для отображения этих физических процессов схема замещения цепи должна содержать кроме источников энергии (E, J) все разнородные схемные элементы (R, L, C). Математически физические процессы в такой схеме можно описать системой дифференциальных уравнений, составленных для схемы замещения по законам Кирхгофа.

Метод преобразования (свертки) схемы

Если схема электрической цепи содержит только один источник энергии (E или J), то пассивная часть схемы может быть преобразована (свернута) к одному эквивалентному элементу RЭ ( рис. 7).

 

 

 

 

 

Свертка схемы начинается с самых удаленных от источника ветвей, проводится в несколько этапов до достижения полной свертки. После полной свертки схемы по закону Ома определяется ток источника: . Токи в остальных элементах исходной схемы находятся в процессе обратной развертки схемы. Такой метод расчета токов получил название метода последовательного преобразования (свертки) схемы.

При применении данного метода возможны следующие виды преобразований.

3) Взаимное преобразование схем звезда-треугольник (рис. 4) возникает при свертке сложных схем.

Условием эквивалентности двух схем являются равенства для них токов (I1, I2, I3), напряжений (U12, U23, U31) и входных сопротивлений (R12, R23, R31) и соответственно входных проводимостей ( G12, G23, G31).

Приравняем входные сопротивления для обеих схем со стороны двух произвольных ветвей при отключенной третей (рис. 10):

 (1)

  (2)

 (3)

Замена параллельных ветвей эквивалентной ветвью (рис. 12) осуществляется согласно теореме об эквивалентном генераторе.

 

 

 

 

 

 

 

Напряжение холостого хода Uxxaв=EЭ определяется по методу двух узлов:

  .

Эквивалентное входное сопротивление находится методом свертки схемы:

Метод законов Кирхгофа

Теоретическая база метода: 1-й и 2-й законы Кирхгофа.

1-й закон Кирхгофа: алгебраическая сумма токов ветвей в узле схемы равна нулю ().

2-й закон Кирхгофа: алгебраическая сумма падений напряжений в произвольном контуре схемы равна алгебраической сумме ЭДС ().

Пусть требуется выполнить расчет режима в заданной сложной схеме (рис. 16) и определить токи в ветвях, напряжения на отдельных элементах, мощности источников и приемников энергии. Задана схема цепи и параметры ее отдельных элементов (E1, E2, J1, J1, J2, R1, R2, R3, R4, R5).

Метод контурных токов

Теоретическая база метода контурных токов – 2-ой закон Кирхгофа в сочетании с принципом наложения. Предполагают, что в каждом элементарном контуре-ячейке схемы протекает «свой» контурный ток Ik, а действительные токи ветвей получаются по принципу наложения контурных токов как их алгебраические суммы. В качестве неизвестных величин, подлежащих определению, в данном методе выступают контурные токи. Общее число неизвестных составляет m-(n-1).

Пусть требуется выполнить расчет режима в заданной сложной схеме рис. 11. Параметры отдельных элементов схемы заданы.

Последовательность (алгоритм) расчета.

Метод узловых потенциалов

Теоретическая база метода узловых потенциалов – 1-ый закон Кирхгофа в сочетании с потенциальными уравнениями ветвей. В этом методе потенциал одного из узлов схемы принимают равным нулю, а потенциалы остальных (n-1) узлов считают неизвестными, подлежащими определению. Общее число неизвестных составляет (n-1).

Рассмотрим обобщенную ветвь некоторой сложной схемы (рис. 18).

 

Свяжем потенциалы концов ветви (узлов) между собой через падения напряжений на отдельных участках:

Последовательность (алгоритм) расчета.

1) Принимают потенциал одного из узлов схемы равным нулю, а потенциалы остальных (n-1) узла считают неизвестными, подлежащими определению.

2) Руководствуясь обобщенной формой, составляют (n-1) уравнение для узлов с неизвестными потенциалами.

3) Определяются коэффициенты узловых уравнений и составляются их матрицы.

4) Система узловых уравнений решается на ЭВМ по стандартной программе для решения систем линейных алгебраических уравнений с вещественными коэффициентами (SU1), в результате чего определяются неизвестные потенциалы узлов j1,  j2, …

5) Выбираются положительные направления токов в ветвях исходной схемы I1, I2 , I3, I4, I5. Токи ветвей определяются из потенциальных уравнений ветвей через потенциалы узлов j1,  j2, ….

Теорема о взаимности

Выделим из сложной схемы две произвольные ветви “m” и “n”, в одной из которых включен источник ЭДС E (в ветви m). Теорема о взаимности гласит, что если источник ЭДС E, включенный в ветви “m”, вызывает в ветви “n” частичный ток I , то такой же источник ЭДС E, включенный в ветвь “n”, вызовет в ветви “m” такой же частичный ток I (рис.23) .

 

Доказательство теоремы о взаимности вытекает из принципа наложения. Частичные токи равны:

Теорема о линейных отношениях

Формулировка теоремы: если в произвольной к-ой ветви сложной схемы изменяется ЭДС источника Ek или сопротивление резистора Rk, то параметры режима в двух других ветвях (например, 1 и 2, I1 и I2, U1 и U2, U1 и I2, I1 и U2 ) изменяются так, что между ними сохраняется линейная зависимость (и т.д.).

Пусть изменяется ЭДС Eк. В соответствии с принципом наложения ток каждой ветви равен сумме частичных токов от каждого источника в отдельности:

Исключим из уравнений переменную величину Eк путем подстановки:

, что требовалось доказать.

Если в схеме изменяется сопротивление резистора , то для доказательства теоремы о линейных отношениях переменный резистор  следует заменить в соответствии с теоремой о компенсации переменной ЭДС  и повторить доказательство.

Метод расчета тока в выделенной ветви сложной схемы, основанный на применении теоремы об эквивалентном генераторе, получил название метода эквивалентного генератора напряжения (тока) или метода холостого хода и короткого замыкания (х.х. и к.з.). Последовательность (алгоритм) расчета выглядит так.

1) Удаляют из сложной схемы выделенную ветвь, выполняют расчет оставшейся части сложной схемы любым методом и определяют напряжение холостого хода   между точками подключения выделенной ветви.

2)Удаляют из сложной схемы выделенную ветвь, закорачивают в схеме точки подключения выделенной ветви, выполняют расчет оставшейся части сложной схемы любым методом и определяют ток короткого замыкания Iкзаb в закороченном участке между точками подключения выделенной ветви.

3)Удаляют из схемы выделенную ветвь, в оставшейся части схемы удаляют все источники (источники ЭДС E закорачивают, а ветви с источниками тока J удаляют из схемы), методом преобразования выполняют свертку пассивной схемы относительно точек подключения выделенной ветви и таким образом определяют Rвхаb.

Пример. В схеме рис. 28 с заданными параметрами элементов (E1=100 В; E2=20 В; E3=30 В, E4=10 В; R1=R2=40 Ом; R3=R4=20 Ом; R5=R6=10 Ом) определить ток в выделенной ветви I6 методом эквивалентного генератора.

 

Решение задачи выполняется поэтапно.

1) Определение Uxx=Eэ в схеме рис. 29.

Электрические цепи переменного синусоидального тока

1. Переменный ток (напряжение) и характеризующие его величины

Переменным называется ток i(t) [напряжение u(t)], периодически изменяющийся во времени по произвольному закону. В электроэнергетике понятие ’’переменный’’ употребляют в более узком смысле, а именно: под переменным  понимают ток (напряжение), изменяющийся во времени по синусоидальному закону:

i(t)=Im sin(wt+yi),

u(t)=Umsin(wt+yu)

Графические диаграммы этих функций имеют вид рис. 32:

Таким образом, в цепи переменного тока любой сложности напряжения и токи на всех участках будут изменяться по синусоидальному закону при условии, что источники энергии обеспечивают синусоидальную форму напряжений на их выводах.

Диапазон частот токов и напряжений, применяемых в различных отраслях современной техники, очень велик: от 10-1 Гц до 109 Гц. В электроэнергетике в качестве стандарта частоты в Европе принята частота f=50 Гц (w=2pf = 314 c-1), а в США и Канаде f = 60 Гц (w = 377 с-1), в других странах возможны оба варианта или один из них.

 Частота f = 50 Гц принята в качестве стандарта исторически на заре развития электроэнергетики и уже не соответствует сегодняшнему уровню развития техники. Оптимальной на сегодня была бы частота в диапазоне 150 – 200 Гц. Однако переход на оптимальную частоту связан с большими техническими сложностями и в ближайшее время не может быть осуществлен.

Среднее и действующее значения переменного тока и напряжения

Среднее значение Fср произвольной функции времени f(t) за интервал времени Т определяется по формуле :

Численно среднее значение Fср равно высоте прямоугольника, равновеликого по площади фигуре, ограниченной кривой f(t), осью t и пределами интегрирования 0 – Т (рис. 33).

Для синусоидальной функции среднее значение за полный период Т (или за целое число полных периодов) равно нулю, так как площади положительной и отрицательной полуволн этой функции равны. Для переменного синусоидального тока (напряжения) среднее значение определяют за половину периода (Т/2) между двумя нулевыми значениями (рис. 34) :

Векторные диаграммы переменных токов и напряжений

Из курса математики известно, что любую синусоидальную функцию времени, например i(t)=Imsin(wt+a), можно изобразить вращающимся вектором при соблюдении следующих условий :

  а) длина вектора в масштабе равна амплитуде функции Im ;

 б) начальное положение вектора при t = 0 определяется начальной фазой a ;

 в) вектор равномерно вращается с угловой скоростью w, равной угловой частоте функции.

Теоретические основы комплексного метода расчета цепей переменного тока

Из курса математики известно, что комплексное число Z может быть представлено в следующих трех формах: показательной, тригонометрической и алгебраической:

В основе перехода от одной формы комплексного числа к другой лежит известная из математики формула Эйлера : 

Здесь обозначены:

j =   – мнимое единичное число,

Z – модуль комплексного числа,

a - аргумент комплексного числа,

а – вещественная часть комплексного числа,

jb – мнимая часть комплексного числа.

Можно утверждать, что каждой точке (вектору) на комплексной плоскости соответствует пределенное комплексное число, и наоборот, каждому комплексному числу соответствует определенная точка (вектор) на комплексной плоскости.

Известно, что синусоидальную функцию можно изобразить вектором, а вектор в свою очередь можно представить комплексным числом. Таким образом, синусоидальные токи и напряжения, характеризующие установившийся режим цепи переменного тока, могут быть представлены комплексными числами :

 Û - комплексная амплитуда,

 

 Û - комплексное действующее значение. Здесь Û -знак соответствия.

При расчете цепей переменного тока возникает необходимость выполнения различного рода математических операций с синусоидальными функциями. При замене синусоидальных функций (оригиналов) комплексными числами (изображениями) соответствующие математические операции выполняются с комплексными числами.

Замена математических операций 2-го рода (дифференцирование, интегрирование) операциями 1-го рода (умножение, деление) существенно упрощает расчет цепей переменного тока в комплексной форме.

Современные инженерные калькуляторы в режиме «compl» позволяют выполнять все действия с комплексными числами непосредственно так же, как с обычными числами. При этом следует принять во внимание, что калькулятор выполняет действия над комплексными числами только в алгебраической форме  и результаты расчета выдает также в алгебраической форме. Если исходные комплексные числа заданы в показательной форме , то после их ввода необходимо выполнить операцию преобразования их в алгебраическую форму.

Комплексный метод расчета цепей переменного тока был разработан в 1910-1912гг. американским инженером Штейнметцом и сыграл большую роль в развитии теории электрических цепей переменного тока.

Количество энергии, которое преобразуется в приемнике в другие виды в единицу времени, называется активной мощностью P. Математически активная мощность может быть получена как среднее значение мгновенной мощности за период:

Реактивная мощность Q характеризует интенсивность обмена энергией между магнитным полем приемника и источником и определяется по формуле:

Реактивная мощность индуктивного характера  положительна, а емкостного характера   отрицательна. Противоположность знаков указывает на тот факт, что колебания энергии в разнородных элементах совершаются в противофазе.

Переменные ток в однородных идеальных элементах

Существует три типа идеальных схемных элементов: резистор R, катушка L и конденсатор C. Рассмотрим процессы в цепи с каждым из названных элементов в отдельности.

а) Цепь с идеальным резистором R.

Пусть к цепи с резистором R (рис. 41а) приложено переменное напряжение:

Цепь с идеальной катушкой L

Пусть к цепи с идеальной катушкой L (рис. 43а) приложено переменное напряжение:

Ток и напряжение на зажимах катушки связаны между собой физическим законом электромагнитной индукции , откуда следует:

,

  где  - индуктивное реактивное сопротивление катушки,

Уравнения закона Ома для амплитудных и действующих значений функций:

Угол сдвига фаз , т.е. в цепи с катушкой L ток отстает от напряжения (напряжение опережает ток) на угол .

Комплексное сопротивление катушки является чисто мнимым и положительн

Электрическая цепь с последовательным соединением элементов R, L и C

 

 

 

Пусть в заданной схеме с последовательным соединением элементов R, L и C (рис. 47) протекает переменный ток

.

По 2-му закону Кирхгофа для мгновенных значений функций получим уравнение в дифференциальной форме:

.

То же уравнение в комплексной форме получит вид:

Электрическая цепь с параллельным соединением элементов R, L и С

 

 

Пусть на входе схемы рис. 49 действует переменное напряжение:

По 1-му закону Кирхгофа для мгновенных значений функций получаем уравнение в дифференциальной форме:

То же уравнение в комплексной форме получит вид:

,

где  - комплексная проводимость,  - активная проводимость,  - реактивная индуктивная проводимость,  - реактивная емкостная проводимость,  - реактивная (эквивалентная) проводимость,  - модуль комплексной проводимости или полная проводимость,  - аргумент комплексной проводимости или угол сдвига фаз между напряжением и током на входе схемы. При  и φ>0 – цепь в целом носит активно-индуктивный характер, а при  и φ<0 – цепь в целом носит активно-емкостный характер.

Уравнение закона Ома для параллельной схемы будет иметь вид:

Активные и реактивные составляющие токов и напряжений

При расчете электрических цепей переменного тока реальные элементы цепи (приемники, источники) заменяются эквивалентными схемами замещения, состоящими из комбинации идеальных схемных элементов R, L и С.

Пусть некоторый приемник энергии носит в целом активно-индуктивный характер (например, электродвигатель). Такой приемник может быть представлен двумя простейшими схемами замещения, состоящими из 2-х схемных элементов R и L: а) последовательной (рис. 51а) и б) параллельной (рис. 51б):

 

Обе схемы будут эквивалентны друг другу при условии равенства параметров режима на входе: , .

Для последовательной схемы (рис. 51а) справедливы соотношения:

Последовательной схеме замещения соответствует представление вектора напряжения в виде суммы двух составляющих: активной составляющей Uа, совпадающей с вектором тока I, и реактивной составляющей Uр, перпендикулярной к вектору тока (рис. 52а):

 

Из геометрии рис. 52а следуют соотношения: . Треугольник, составленный из векторов , ,  получил название треугольника напряжений.

Если стороны треугольника напряжений разделить на ток I, то получится новый треугольник, подобный исходному, но сторонами которого являются полное сопротивление Z, активное сопротивление R и реактивное сопротивление X. Треугольник со сторонами Z, R, X  называется треугольником сопротивлений (рис. 52б). Из треугольника сопротивлений следуют соотношения: R=Z×cosφ, X=Z×sinφ, , .

Параллельной схеме замещения соответствует представление вектора тока в виде суммы двух составляющих: активной составляющей Iа, совпадающей с вектором напряжения U, и реактивной составляющей Iр, перпендикулярной к вектору U (рис. 53а):

Передача энергии от активного двухполюсника (источника) к пассивному двухполюснику (приемнику)

Двухполюсником называется устройство или часть схемы (цепи) с двумя выводами (полюсами). Если внутри двухполюсника содержатся источники энергии, то он называется активным (A), в противном случае – пассивным (П).

Энергетические характеристики передачи энергии от активного двухполюсника (источника) к пассивному двухполюснику (приемнику) на переменном токе зависят от соотношения параметров приемника и источника между собой (рис. 54)

Компенсация реактивной мощности приемников энергии

Активная мощность приемника P=UIcosj характеризует интенсивность потребления им энергии и зависит от режима его работы.

Реактивная мощность приемника Q=UIsinj  характеризует интенсивность обмена энергией между электромагнитным полем приемника и остальной цепью. Эта мощность положительна при индуктивном характере приемника () и отрицательна при емкостном характере (). В промышленных условиях преобладающее большинство приемников имеют активно-индуктивный характер () и потребляют положительную реактивную мощность. Параллельное подключение к таким приемникам конденсаторов, потребляющих отрицательную реактивную мощность  и, таким образом, являющихся генераторами реактивной мощности для приемников, позволяет уменьшить (компенсировать) суммарную реактивную мощность: .

Компенсация реактивной мощности позволяет при неизменной активной мощности уменьшить потребляемый от сети ток:

При увеличении емкости компенсирующего конденсатора С пропорционально будет увеличиваться потребляемый им ток . Ток линии, равный геометрической сумме токов нагрузки и конденсатора (), вначале будет уменьшаться (при QL>QC), достигнет своего минимального значения при полной компенсации реактивной мощности , а затем начнет возрастать при QC > QL (рис. 57).

 

Из геометрии рис. 57 следует соотношение:

.

Тот же ток из закона Ома:

.

Из совместного решения этих двух уравнений вытекает  формула для расчeта емкости компенсирующего устройства от первоначального значения  tgj2 до заданного tg:

Резонанс в электрических цепях

Определение резонанса

В электрической цепи, содержащей катушки индуктивности L и конденсаторы C, возможны свободные гармонические колебания энергии между магнитным полем катушки   и электрическим полем конденсатора . Угловая частота этих колебаний wo, называемых свободными или собственными, определяется структурой цепи и параметрами ее отдельных элементов R, L ,C.

Резонансным режимом цепи или просто резонансом называется явление увеличения амплитуды гармонических колебаний энергии в цепи, наблюдаемое при совпадении частоты собственных колебаний wo с частотой вынужденных колебаний w, сообщаемых цепи источником энергии (wo = w).

В резонансном режиме колебания энергии между магнитным и электрическим полями замыкаются внутри цепи, обмен энергией между источником и цепью отсутствует, а вся поступающая от источника энергия преобразуется в другие виды, т.е. электрическая цепь по отношению к источнику энергии ведет себя как чисто активное сопротивление R (активная проводимость G). На этом основании условие для резонансного режима можно сформулировать через параметры элементов схемы, а именно: входное сопротивление и, соответственно, входная проводимость схемы со стороны выводов источника энергии должна носить чисто активный характер: Zвх=Rвх; Yвх=Gвх; Xвх=0; Bвх=0; или в комплексной форме: Im[Zвх]=0, Im[Yвх]=0.

Напряжения на реактивных элементах равны по модулю, противоположны по фазе и взаимно компенсируют друг друга:

,

а напряжение на резисторе равно напряжению источника : UR=IR=U=E.

Равные по модулю напряжения на реактивных элементах UL=UC = могут значительно превосходить напряжение источника U = Е при условии, что XL=XC>>R.

Выясним энергетические процессы, протекающие в цепи в резонансном режиме. Пусть в цепи протекает ток i =Imsinwt, тогда напряжение на конденсаторе составит:

.

Сумма энергий магнитного и электрического полей равна:

Резонанс токов

Резонанс в цепи с параллельным соединением источника энергии и реактивных элементов L и C получил название резонанса токов. Простейшая схема такой цепи показана на рис. 64.

 

Комплексная входная проводимость схемы:

Условие резонанса токов:  или , откуда  - резонансная  (собственная) частота.

Из полученного равенства следует, что резонансного режима в цепи можно достичь изменением параметров элементов L и C или частоты источника w.

В резонансном режиме полная проводимость схемы равна активной проводимости и имеет минимальное значение:  = G, а ток источника также минимален и совпадает по фазе с напряжением источника ( j = 0): I =UY = UG.

Токи в ветвях с реактивными элементами IL=U(-jBL), IC =U(jBC) равны по модулю, противоположны по фазе и компенсируют друг друга, а ток в резисторе G равен току источника (I=IG=UG). Равные по модулю токи в реактивных элементах IL = IC могут значительно превосходить ток источника I при условии, что BL=BC>>G .

Резонанс в сложных схемах

Схемы замещения реальных электрических цепей могут существенно отличаться от рассмотренных выше простейших последовательной или параллельной схем. Хотя условие резонансного режима в общем виде [ Im(Zвх)=0 и Im(Yвх)=0 ] для любой схемы сохраняется, однако конкретное содержание этих уравнений будет определяться структурой схемы замещения.

  На рис. 67 приведена эквивалентная схема параллельного контура, в которой реальные элементы цепи (катушка и конденсатор) представлены последовательными схемами замещения.

Входное комплексное сопротивление схемы:

Условие резонанса:

 или 

Анализ этого уравнения показывает неоднозначную зависимость условия резонанса от значений параметров каждого элемента схемы.

Если сложная схема содержит в своей структуре несколько (более двух) разнородных реактивных элементов, то при изменении частоты в ней могут наблюдаться несколько резонансных режимов (как тока, так и напряжения) в зависимости от структуры схемы.

Магнитносвязанные электрические цепи

1.Общие определения

Если магнитное поле, создаваемое одной из катушек, пересекает плоскость витков (сцеплено с витками) второй катушки, то такие катушки принято называть магнитносвязанными (индуктивносвязанными) (рис. 69а).

2. Последовательное соединение магнитносвязанных катушек

 

 Пусть две магнитносвязанные катушки (R1, L1, R2, L2, M) соединены последовательно с источником ЭДС Е (рис. 70).

 

При последовательном соединении положительное направление тока выбирается одновременно для обеих катушек, поэтому его направление относительно одноименных выводов зависит только от способа соединения катушек между собой: a) согласное (*) и б) встречное ( · ).

 При согласном включении собственные и взаимные магнитные потоки будут складываться, а при встречном — вычитаться. По второму закону Кирхгофа:

-дифференциальная форма,

   - комплексная форма

 

Здесь и далее знак “+” соответствует согласному включению, а знак “-”  - встречному.

Полученное соотношение используется на практике для экспериментального определения взаимного реактивного сопротивления XМ и соответственно взаимной индуктивности M. Для этого в цепи согласно схемы рис. 72  фиксируют показания трех измерительных приборов ( U, I, φ) при согласном (1) и встречном (2) включении катушек и по показаниям приборов определяют эквивалентные параметры цепи:

  Большему значению Xэ соответствует согласное включение, меньшему - встречное.

 

Сложная цепь с магнитносвязанными катушками

 В сложной цепи магнитосвязанные катушки могут находиться в любых ветвях. Так как направления токов в ветвях схемы выбираются  произвольно, то токи в ветвях, содержащих магнитносвязанные катушки, могут быть направлены как согласно, так и встречно.

 Расчет токов в сложной схеме с магнитносвязанными катушками производится, как правило, методом законов Кирхгофа. К расчету таких цепей неприменим метод узловых потенциалов и метод эквивалентного генератора. Учет всех слагаемых в уравнениях метода контурных токов довольно сложен, по этой причине его также не применяют.

Линейный (без сердечника) трансформатор

Схема линейного трансформатора состоит из двух магнитносвязанных катушек, к одной из которых (первичной) подключается источник ЭДС Е, а ко второй (вторичной) - нагрузка ZН (рис. 77).

 

Уравнения Кирхгофа для схемы трансформатора в комплексной форме имеют вид:

Исследование режимов электрических цепей методом круговых диаграмм.

Уравнение дуги окружности в комплексной форме.

При изменении параметров одного из элементов сложной цепи токи всех ветвей, напряжения на всех элементах изменяются так, что концы векторов этих величин описывают дуги некоторых окружностей. Для исследования зависимости любой векторной величины (U, I) от переменного параметра достаточно определить дугу окружности, по которой перемещается конец этого вектора, другими словами, построить круговую диаграмму.

Уравнение дуги окружности в комплексной форме имеют вид:

 ,

где М = Мejb – исследуемый вектор, M0 - вектор-хорда дуги окружности, a = const – постоянный коэффициент, y = const – постоянный угол, n = var = (0 - ¥) – переменный параметр.

Порядок построения круговой диаграммы по заданному уравнению:

Круговая диаграмма тока и напряжений для элементов последовательной цепи

Рассмотрим схему цепи, состоящую из последовательно включенных источника ЭДС E и пассивных элементов Z1, и Z2 (рис. 81). Задано, что E = Eeja=const, Z1 = Z1ejj1 = const, Z2 = Z2ejj2, где j2=const, a Z2 = var = 0÷¥ - переменный параметр.

 

Преобразуем уравнение закона Ома для схемы к виду дуги окружности в комплексной форме:

,

где  М0 = Iк= E/Z1 – ток короткого замыкания, соответствует вектору-хорде дуги окружности, Z2 = n = var – переменный параметр, Z1= a = const -  постоянный коэффициент, j2 -j1= y = const – постоянный угол.

Круговая диаграмма для произвольного тока и напряжения в сложной цепи

 Пусть в схеме сложной цепи изменяется параметр сопротивления в к-той ветви Zк=Zкejjк так, что фазный угол jк= const, а модуль Zк=0÷¥ = var – переменный параметр.

Выделим к-тую ветвь из сложной схемы, а остальную часть схемы по отношению к ветви заменим эквивалентным генератором напряжения с параметрами Eэ = Uхх, Z0= Z0ejjo = Zвх (рис 82):

 

Таким образом, получившаяся эквивалентная схема рис. 82 ничем не отличается от рассмотренной ранее схемы рис. 81, и, следовательно, для переменных векторов Iк, Uк по аналогии могут быть могут быть записанные уравнения дуги в комплексной форме, например:

Топологические методы расчета электрических  цепей

1.Топологические определения схемы

 С появлением ЭВМ и их широким применением для решения сложных математических задач были разработаны специальные топологические расчёта сложных электрических цепей, графов и матриц.

Схема сложной электрической цепи (рис. 83а) может быть заменена (представлена) направленным графом (рис. 83б) с соблюдением следующих условий:

1)узлы графа соответствуют узлам схемы;

2)ветви графа соответствуют ветвям схемы;

3) направление ветвей соответствует направлению токов в ветвях схемы.

Составим таблицу соединений «узлы-ветви» руководствуясь следующими правилами:

1 – ветвь выходит из узла,

-1 – ветвь входит в узел,

0 – отсутствие связи с узлом.

Уравнения Ома и Кирхгофа в матричной форме

Если в исследуемой сложной схеме содержатся параллельно включенные ветви, то для составления матриц соединений такие ветви необходимо заменить (объединить) одной эквивалентной ветвью.

В общем случае любая ветвь схемы кроме комплексного сопротивления (проводимости)  может содержать источник ЭДС Ек, источник тока Jк. Схема и граф обобщенной ветви показаны на рис. 1а, б:

Уравнения Кирхгофа в обычной форме имеют вид:  - первый закон Кирхгофа для узлов, - второй закон Кирхгофа для контуров.

Система уравнений Кирхгофа в матричной форме получается через матрицы соединений  и :

Составленная система уравнений содержит “m” неизвестных токов и “m” неизвестных напряжений, всего 2“m” неизвестных, и непосредственно не может быть решена.

Сделаем подстановку матрицы  из матричных уравнений закона Ома, получим:

Для сравнения приведем те же уравнения в обычной форме:

Сделаем подстановку матрицы  из матричного уравнения закона Ома, получим:

Контурные уравнения в матричной форме

Вводим понятия контурных токов Iк . Контурные токи замыкаются по контурам-ячейкам графа, именуются по имени хорды, их направление совпадает с направлением хорды. Столбовая матрица контурных токов:

Действительные токи связаны с контурными через матрицу :

Заменим в уравнениях 2-го закона Кирхгофа действительные токи [I] на контурные   согласно формуле:

 

  Введем обозначения:

 -матрица контурных сопротивлений

Узловые уравнения в матричной форме

Вводим понятие узловых потенциалов jу. Потенциал последнего n-го узла, для которого отсутствует строка в матрице [A] принимается равным 0. Столбовая матрица узловых потенциалов:

Напряжения ветвей связаны с потенциалами узлов через матрицу .

Подставим в уравнения 1-го закона Кирхгофа , получим:

 Введем обозначения:

  - матрица узловых проводимостей

Электрические цепи трехфазного тока.

Трехфазная система

Многофазной системой называется совокупность, состоящая из ”n” отдельных одинаковых электрических цепей или электрических схем, режимные параметры в которых (е, u, i) сдвинуты во времени на равные отрезки  или по фазе .

Отдельные части системы называются фазами. Термин ”фаза” в электротехнике имеет два смысловых значения: первое - как момент времени для синусоидальной функции тока или напряжения, второе - как часть многофазной системы. В технике нашли применение 2-х, 3-х, 6-и и более фазные системы. В электроэнергетике наибольшее распространение получила трехфазная система, обладающая рядом преимуществ перед системами с другим числом фаз.

Трехфазная система состоит из трех электрических цепей или электрических схем (фаз), параметры режима (u,i) в которых сдвинуты во времени на . Отдельные фазы трехфазной системы согласно ГОСТ обозначаются (именуются) заглавными латинскими буквами А, В, С (основное обозначение), или цифрами 1, 2, 3 (допустимое обозначение), или заглавными латинскими буквами R, S, T (международное обозначение). 

Основное свойство любых переменных функций (е, u, i) в симметричной трехфазной системе состоит в том, что сумма их мгновенных значений в любой момент времени равна нулю, например, еА + еВ + еС = 0. Найдем эту сумму для разных моментов времени:

;

;

.

Как следует из векторной диаграммы рис. 87, геометрическая сумма векторов фазных ЭДС также равна нулю:

.

Если нагрузка отдельных фаз равна между собой, т.е. , то фазные токи будут равны по модулю и сдвинуты по фазе относительно своих ЭДС (напряжений ) на один и тот же угол φ, а между собой, как и ЭДС, будут сдвинуты по фазе на 120о. Следовательно, фазные токи iА, iВ, iС образуют симметричную трехфазную систему и для них будут справедливы полученные ранее выводы: iА + iВ + iС = 0; IА + IВ + IС = 0.

Достоинства трехфазной системы:

Передача энергии от генератора к потребителям трехфазным током  наиболее выгодна экономически, чем при любом другом числе фаз. Например, по сравнению с двухпроводной системой достигается экономия проводов в два раза (3 провода вместо 6), соответственно уменьшаются потери энергии в проводах линии.

Трехфазная система позволяет технически просто получить круговое вращающееся поле, которое лежит в основе работы всех трехфазных машин (генераторов и двигателей).

Элементы трехфазной системы (генераторы, трансформаторы, двигатели) просты по конструкции, надежны в работе, имеют хорошие массогабаритные показатели, сравнительно дешевы, долговечны.

В трехфазном генераторе различают фазные и линейные напряжения. Фазными называются напряжения между началами и концами фазных обмоток или между одним из линейных выводов А, В, С и нулевым выводом N. Фазные напряжения равны фазным ЭДС: UА=ЕА, UВ=ЕВ, UС=ЕС (индекс N при фазных напряжениях опускается, так как φN = 0). Линейными называются напряжения между двумя линейными выводами А, В, С. Линейные напряжения равны векторной разности двух фазных напряжений: UАВ =UА -UВ; UВС =UВ -UС;  UСА =UС -UА .

  При расчете трехфазных цепей комплексным методом фазные и линейные напряжения генератора представляются в комплексной форме, при этом один из векторов системы принимают за начальный и совмещают его с вещественной осью, а остальные вектора получают начальные фазы согласно их углам сдвига по отношению к начальному вектору. На рис. 89а показан вариант представления напряжений трехфазного генератора в комплексной форме, когда за начальный вектор принимается фазное напряжение фазы А. В этом случае фазные напряжения генератора в комплексной форме получат вид : , , линейные напряжения: .

Способы соединения фаз трехфазных приемников.

Приемники трехфазного тока могут подключаться к генератору по двум схемам – звезды () и треугольника (). Как известно, на выходе трехфазного генератора получаются два напряжение (линейное и фазное), отличающиеся в Uл/Uф = раз. С другой стороны каждый приёмник энергии рассчитан на работу при определенном напряжении, которое называется номинальным. Схема соединения фаз приемника должна обеспечить подключение его фаз номинальное фазное напряжение. Таким образом, выбор схемы соединения фаз трехфазного приемника зависит от соотношения номинальных напряжений приемника и генератора (сети).

Схема звезды применяется в том случае, если номинальное напряжение приемника соответствует (равно) фазному напряжению генератора. При соединении в звезду концы фаз приемника объединяются в одну точку “n”, называемую нулевой или нейтральной, а начала фаз подключаются к линейным выводам трехфазного генератора А, В, С линейными проводами. Если нулевая точка приемника “n” соединена с нулевой точкой генератора “N” нулевым проводом, то схема получила название звезды с нулевым проводом (рис. 91а). При отсутствии нулевого провода схема носит название звезды без нулевого провода (рис. 91б).

При симметричной нагрузке  ток в нулевом проводе  и, следовательно, надобность в нeм отпадает. Симметричные трехфазные приемники (например, трехфазные электродвигатели) включаются по схеме звезды без нулевого провода.

При несимметричной нагрузке относительная величина тока в нулевом проводе зависит от характера и степени не симметрии фазных токов. Как правило, трехфазные приёмники стремятся спроектировать по возможности близкими к симметричным, поэтому ток в нулевом проводе в реальных условиях значительно меньше линейных (фазных) токов.

В схеме звезды без нулевого провода (рис. 91б) при любой нагрузке фаз должно выполняться условие первого закона Кирхгофа:

.

Из уравнения следует вывод, что изменение одного из токов влечет изменение двух других токов, то есть отдельные фазы работают в зависимом друг от друга режиме. При несимметричной нагрузке потенциал нулевой точки приемника Un становится не равным нулю, он “смещается” на комплексной плоскости с нулевого положения, при этом фазные напряжения приемника () не равны соответствующим фазным напряжениям генератора (), происходит так называемый перекос фазных напряжений приемника (рис. 93).

Схема треугольника применяется в том случае, если номинальное фазное напряжение приемника соответствует (равно) линейному напряжению генератора. При соединении в треугольник конец каждой фазы соединяется с началом последующей, а точки соединения (вершины треугольника) подключаются к линейным выводам трехфазного генератора А, В, С линейными проводами (рис.94).

Токи, протекающие в фазах приемника по направлению от их начал к концам, называются фазными (). Токи, протекающие в линейных проводах по направлению от генератора к приемнику, называются линейными ().

 

В схеме треугольника фазные и линейные напряжения приемника тождественно равны (). В этой схеме к каждой фазе приемника подводится непосредственно линейное напряжение генератора, при этом отдельные фазы работают независимо друг от друга. Фазные токи определяются по закону Ома:

Расчет сложных трехфазных цепей

Сложная трехфазная цепь, например, объединенная энергосистема, может содержать большое число трехфазных генераторов, линий электропередачи, приемников трехфазной энергии. Схема такой цепи представляет собой типичный пример сложной цепи переменного тока. Установившейся режим в такой схеме может быть описан системой алгебраических уравнений с комплексными коэффициентами, составленных по одному из методов расчета сложных цепей (метод законов Кирхгофа, метод контурных токов, метод узловых потенциалов). Наиболее рациональным методом расчета таких трехфазных цепей является метод узловых потенциалов, при этом составление уравнений и их решение производится в матричной форме.

В более простых случаях возможно применение любых методов расчета, позволяющих получить экономичное решение задачи. На рис. 96 представлена схема параллельного подключения нескольких трехфазных приемников с различными схемами соединения фаз к одному генератору. В представленной схеме расчет фазных и линейных токов каждого из приемников может выполняться индивидуально и независимо друг от друга, а линейные токи источника определяются как геометрические суммы токов всех приемников, например, .

Следовательно, независимо от схемы соединения (звезда или треугольник) для симметричной трехфазной цепи формулы для мощностей имеют одинаковый вид:

  [Вт],

 [вар],

  [ВА].

В приведенных формулах для мощностей трехфазной цепи подразумеваются линейные значения величин U и I, но индексы при их обозначениях не ставятся.

Активная мощность в электрической цепи измеряется прибором, называемым ваттметром, показания которого определяется по формуле:

, где Uw, Iw - векторы напряжения и тока, подведенные к обмоткам прибора.

 

Для измерения активной мощности всей трехфазной цепи в зависимости от схемы соединения фаз нагрузки и ее характера применяются различные схемы включения измерительных приборов.

Для измерения активной мощности симметричной трехфазной цепи применяется схема с одним ваттметром, который включается в одну из фаз и измеряет активную мощность только этой фазы (рис. 99). Активная мощность всей цепи получается путем умножения показания ваттметра на число фаз: . Схема с одним ваттметром может быть использована только для ориентированной оценки мощности и неприменима для точных и коммерческих измерений.

Для измерения активной мощности в четырехпроводных трехфазных цепях (при наличии нулевого провода) применяется схема с тремя приборами (рис. 100), в которой производится измерение активной мощности каждой фазы в отдельности, а мощность всей цепи определяется как сумма показаний трех ваттметров:

.

Вращающееся магнитное поле

Одним из важнейших достоинств трехфазной системы является возможность получения с ее помощью кругового вращающегося магнитного поля, которое лежит в основе работы трехфазных машин (генераторов и двигателей).

Для получения кругового вращающегося магнитного поля необходимо и достаточно выполнить два условия. Условие первое: необходимо 3p одинаковых катушки (p =1, 2, 3,….) расположить в пространстве так, чтобы их оси были расположены в одной плоскости и сдвинуты взаимно на равные углы ∆α=360o/3p. Условие второе: необходимо пропустить по катушкам равные по амплитуде и сдвинутые во времени на ∆t=T/3 или ∆ωt = 360o/3=120o переменные токи (симметричный трехфазный ток). При соблюдении указанных условий в пространстве вокруг катушек будет создано круговое вращающееся магнитное поле с постоянной амплитудой индукции Вmax вдоль его оси и с постоянной угловой скоростью вращения ωп.

На рис. 103 показано пространственное расположение трех (p = 1) одинаковых катушек под равными углами в 120o согласно первому условию.

По катушкам, по направлению от их начал (A, B, C) к концам (X, Y, Z) протекает симметричный трехфазный ток:

iA = Im×sin(wt+0),

iB = Im×sin(wt-1200),

iC = Im×sin(wt+1200).

Результирующий вектор индукции магнитного поля B для любого момента времени может быть найден путем пространственного сложения векторов BA, BB, BC отдельных катушек. Определим значение результирующего вектора индукции магнитного поля B для нескольких моментов времени ωt = 00; 300; 600. Пространственное сложение векторов  выполним графически (рис. 104а, б, в ). Результаты расчета сведены в отдельную таблицу:

wt

BA

BB

BC

B

a

0

0

-/2×Bm

/2×Bm

3/2×Bm

0

30

1/2×Bm

-Bm

1/2×Bm

3/2×Bm

300

60

/2×Bm

-/2×Bm

0

3/2×Bm

600

Частоту вращения магнитного поля можно изменять плавно изменением частоты питающего тока f, и ступенчато - изменением числа пар полюсов p. В промышленных условиях оба способа регулирования частоты вращения поля являются технически и экономически малоэффективными. При постоянной частоте промышленного тока f=50 Гц шкала синхронных частот вращения магнитного поля в функции числа пар полюсов выглядит следующим образом:

р, пар пол.

1

2

3

4

5

6

n, об/мин

3000

1500

1000

750

600

500

На рис. 1 представлены симметричные составляющие некоторой несимметричной рехфазной системы напряжений UA,UB,UC.

В методе симметричных составляющих для упрощения формы записи уравнений пользуются коэффициентом (поворотный множитель),  умножением на который поворачивают вектор на угол в 1200 без изменения его модуля. Свойства поворотного множителя: .

Используя поворотный множитель “a” и “a2”, выразим все слагаемые правой части уравнений через симметричные составляющие фазы А:

 

Умножим все члены уравнения (2) на “a”, а все члены уравнения (3) на “a2”, сложим все три уравнения почленно и получим:

Из полученного уравнения следует формула для выделения симметричной составляющей прямой последовательности из несимметричной системы векторов:

.

Умножим все члены уравнения (2) на “a2”, а все члены уравнения (3) на “a”, сложим все три уравнения почленно и получим:

Расчет режима симметричной трехфазной нагрузки при несимметричном напряжении

Пусть к симметричному трехфазному приемнику, например электродвигателю, приложена несимметричная система напряжений UA, UB, UC. Для получения общих закономерностей введем в схему нулевой провод с сопротивлением ZN. Схема цепи примет вид (рис. 108):

Расчет токов коротких замыканий в энергосистеме методом симметричных составляющих

В результате различного вида коротких замыканий в сложной энергосистеме возникает несимметричный режим. Расчет токов коротких замыканий в различных точках энергосистемы является важной инженерной задачей. Также расчеты выполняются методом симметричных составляющих.

В качестве примера рассмотрим определение тока однофазного короткого замыкания на землю в заданной точке простейшей энергосистемы. Символьная схема энергосистемы показана на рис. 110. Короткое замыкание фазы А на землю происходит в конце линии электропередачи.

Далее в соответствии с теоремой об эквивалентном генераторе производится свертка расчетных схем для каждой из симметричных составляющих относительно выводов несимметричного участка ab. В результате свертки получаются простейшие одноконтурные схемы (рис. 114а, б, в):

Для каждой из расчетных схем (рис. 114а, б, в) составляются уравнения по 2-му закону Кирхгофа:

 (1)

  (2)

  (3)

В полученной системе уравнений Кирхгофа содержится 6 неизвестных величин (IA1, IA2, IA0, UA1, UA2, UA0) и ее непосредственное решение невозможно. Поэтому система уравнений Кирхгофа дополняется тремя недостающими уравнениями, вытекающими из вида короткого замыкания. В рассматриваемом примере в точке короткого замыкания напряжение фазы А равно нулю (UA = 0), а также токи фаз В и С равны нулю (IB = IC = 0). Дополнительные уравнения будут иметь вид:

Фильтры симметричных составляющих

Фильтрами симметричных составляющих называются технические устройства или схемы, служащие для выделения соответствующих составляющих токов или напряжений из несимметричной трёхфазной системы векторов.

Напряжения и токи, выделяемые фильтрами симметричных составляющих, используются на практике в качестве входных величин для релейной защиты энергетических установок (генераторов, трансформаторов, линий электропередачи) от несимметричных режимов, возникающих в результате коротких замыканий, или для соответствующей сигнализации о несимметричном режиме.

Фильтр напряжений обратной последовательности реализуется схемой рис. 116 при следующих соотношениях между параметрами элементов: , , .

Напряжение на отдельных участках схемы с учетом заданных соотношений между парамтрами элементов:

Выходное напряжение фильтра:

Преобразуем формулу для напряжения обратной последоватеоьности путем добавления и вычитания члена :

Русские художники