Метод узловых потенциалов Резонанс в электрических цепях

Сложная цепь с магнитносвязанными катушками

 В сложной цепи магнитосвязанные катушки могут находиться в любых ветвях. Так как направления токов в ветвях схемы выбираются произвольно, то токи в ветвях, содержащих магнитносвязанные катушки, могут быть направлены как согласно, так и встречно.

 Расчет токов в сложной схеме с магнитносвязанными катушками производится, как правило, методом законов Кирхгофа. К расчету таких цепей неприменим метод узловых потенциалов и метод эквивалентного генератора. Учет всех слагаемых  в уравнениях метода контурных токов довольно сложен, по этой причине его также не применяют.

  Рассмотрим расчет схемы на конкретном примере рис. 73:

 

Система уравнений Кирхгофа:

 

При составлении уравнений по второму закону Кирхгофа следует соблюдать правило полярности токов, а именно, падение напряжения от собственного тока ветви на собственном реактивном сопротивлении (I1jX1) и падение напряжения на взаимном реактивном сопротивлении от тока связанной ветви (I2jXМ) принимаются одного знака при согласном направлении этих токов, и противоположного знака при встречном направлении (в рассматриваемом примере токи направлены согласно).

Сделаем  подстановки в уравнение (2) I2 = I - I1 и в уравнение (3) I1 = I - I2, в результате получим новую систему уравнений:

Новой системе уравнений соответствует некоторая новая эквивалентная схема без магнитных связей (рис. 74):

 

Если ветви с магнитносвязанными катушкам присоединены к общему узлу одноименными выводами, то магнитная развязка имеет вид рис. 75:

Если ветви с магнитносвязанными катушкам присоединены к общему узлу разноименными выводами, то магнитная развязка имеет вид рис. 76:

 

Замена исходной схемы с магнитносвязанными катушками эквивалентной схемой без магнитных связей называется развязкой магнитных связей или магнитной развязкой. Магнитная развязка электрических схем применяется для упрощения их расчета. После выполнения магнитной развязки к расчету схемы применим любой метод расчета сложных схем.

Свойства периодических кривых, обладающих симметрией Коэффициенты ряда Фурье для стандартных функций могут быть взяты из справочной литературы или в общем случае рассчитаны по приведенным выше формулам. Однако в случае кривых, обладающих симметрией, задача существенно упрощается, поскольку из их разложения выпадают целые спектры гармоник.
Расчет сложных трехфазных цепей