Метод узловых потенциалов Резонанс в электрических цепях

Топологические методы расчета электрических цепей

1.Топологические определения схемы

 С появлением ЭВМ и их широким применением для решения сложных математических задач были разработаны специальные топологические расчёта сложных электрических цепей, графов и матриц.

Схема сложной электрической цепи (рис. 83а) может быть заменена (представлена) направленным графом (рис. 83б) с соблюдением следующих условий:

1)узлы графа соответствуют узлам схемы;

2)ветви графа соответствуют ветвям схемы;

3) направление ветвей соответствует направлению токов в ветвях схемы.

 

Любая часть графа называется подграфом. Минимальный связанный подграф, соединяющий все узлы графа и не образующий контуров, называется деревом графа (на схеме графа обозначается жирной линией). Для конкретного графа может быть составлено определенное множество вариантов деревьев, но в расчете схемы принимается любой из вариантов. Ветви графа, не входящие в его дерево, называются связями или хордами.

Структура графа и соответственно структура электрической схемы может быть описана с помощью топологических матриц или матриц соединения. Таких матриц несколько, для расчета электрических цепей используются две основные:  - матрица соединений «узлы-ветви» и - матрица соединений «контуры-ветви». 

 В общем случае сложная схема содержит «m» ветвей и «n» узлов, при этом максимальное число ветвей зависит от числа узлов: .

Свойства периодических кривых, обладающих симметрией Коэффициенты ряда Фурье для стандартных функций могут быть взяты из справочной литературы или в общем случае рассчитаны по приведенным выше формулам. Однако в случае кривых, обладающих симметрией, задача существенно упрощается, поскольку из их разложения выпадают целые спектры гармоник.
пласти дип покраска, расход пласти дип на авто.
На www.хит-сезона.рус уличная гирлянда шарики купить.
Расчет сложных трехфазных цепей