Исследование линейной цепи Выбор типа трансформатора

Расчёт сложных цепей переменного тока символическим методом

3.1 Комплексные числа

Для расчёта электрических цепей переменного тока с применением комплексных чисел необходимо знать формы их выражения. Алгебраическая форма имеет вид:

А = а + jb (3.1)

где а – вещественная часть, b – мнимая часть, j =  – мнимая единица.

 

 

 

 

 

Комплексное число можно показать на комплексной плоскости как вектор, конец которого имеет координаты а и b (рисунок 3.1). По горизонтальной оси откладываются вещественные числа, а по вертикальной – мнимые.

Рисунок 3.1 [an error occurred while processing this directive]

 Длина отрезка ОМ в определённом масштабе определяет абсолютное значение или модуль комплексного числа:

A =

 а) б) в)

Рисунок 3.2

Формула для определения угла α зависит от квадранта, в котором находится вектор комплексного числа. Угол α откладывается в положительном направлении против часовой стрелки, а в отрицательном направлении - по часовой стрелке от вещественной положительной оси. Это можно показать на рис. 3.2 (а, б и в).

Поскольку при расчёте угла α учащиеся зачастую допускают ошибки, формулы для его определения можно свести в таблицу 3.1. в которой также указываются знаки вещественной и мнимой частей в зависимости от квадранта, в котором находится заданный комплекс.

Если в формулу (3.1) подставить выражения a = A * Cos a  и b = A * Sina , то получаем тригонометрическую форму выражения комплексного числа:

Таблица 3.1

№ квадрантов

Знаки вещественной и мнимой частей

Формулы для определения угла

a

b

I

+

+

arc tg b/a

II

+

180° + arc tg b/a

III

180° + arc tg b/a

IV

+

arc tg b/a

A = A * Cos α + jA * Sin α = A (Cos α + j Sin α).

В математике доказывается, что Cos α + j Sin α = ejα.

Тогда комплексное число можно выразить в показательной форме:

A = A * ejα.

Таким образом, комплексное число можно представить в виде:

A = a + jb = A (Cos α + j Sin α) = A * ejα. (3.2)

 

Составление матричных соотношений при наличии ветвей с идеальными источниками В цепи могут иметь место ветви, содержащие только идеальные источники ЭДС или тока. При записи уравнений без использования матричных соотношений такие ветви не вносят каких-либо особенностей в их составление.
Примеры выполнения курсовой работы по ТОЭ