Метод узловых и контурных уравнений Линейные электрические цепи

При увеличении емкости компенсирующего конденсатора С пропорционально будет увеличиваться потребляемый им ток . Ток линии, равный геометрической сумме токов нагрузки и конденсатора (), вначале будет уменьшаться (при QL>QC), достигнет своего минимального значения при полной компенсации реактивной мощности , а затем начнет возрастать при QC > QL (рис. 57).

 

Из геометрии рис. 57 следует соотношение:

Магнитное поле соленоида Соленоид представляет собой тонкий провод, навитый плотно (виток к витку) на цилиндрический каркас.

.

Тот же ток из закона Ома:

.

Из совместного решения этих двух уравнений вытекает формула для расчeта емкости компенсирующего устройства от первоначального значения tgj2 до заданного tg:

  [мкФ].

Сопротивление воздушных ЛЭП носит активно-индуктивный характер с существенным преобладанием реактивного сопротивления (XЛ >> RЛ), поэтому падение напряжения в линии UЛ = I(RЛ+jXЛ) почти на 90˚ опережает ток. На рис. 5 показано семейство векторных диаграмм токов и напряжений для разных значений компенсирующей емкости С=var при постоянном значении напряжения в начале линии .

Из анализа семейства диаграмм следует, что увеличение степени компенсации реактивной мощности повышает напряжение U2 на выводах нагрузки, таким образом, происходит компенсация потери напряжения в линии DU = U1 – U2. На практике указанная функциональная зависимость U2 = f(C) используется для поддержания заданного уровня напряжения на выводах (шинах) нагрузки при изменении ее параметров.

Таким образом, посредством компенсации реактивной мощности нагрузки в энергосистеме решаются две важные технико-экономические задачи. Во-первых, уменьшение тока линии электропередачи позволяет снизить потери мощности в ней () и повысить ее КПД. Во-вторых, с помощью регулируемых компенсирующих устройств можно управлять напряжением на выводах нагрузки, поддерживать его на заданном номинальном уровне при изменении потребляемой активной мощности P2 в широком диапазоне.

1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. -5-е изд., перераб. -М.: Энергоатомиздат, 1989. -528с. 2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. -7-е изд., перераб. и доп. -М.: Высш. шк., 1978. -528с. 3. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. -М.: Энергия- 1972. -240с.
Законы Кирхгофа при расчете электрических цепей