История искусства Экология энергетики Инженерная графика и машиностроительное черчение Математика решение задач и примеров Курс лекций по физике и электротехнике
Функция нескольких переменных Интеграл Типовые задачи Системы линейных уравнений Предел функции Неопределенный интеграл Производная и дифференциал Неопределенный интеграл

Дифференцирование сложной ФНП

Сложная ФНП, как и сложная функция одного переменного, есть суперпозиция двух или нескольких функций. Например, сложная функция , определенная на множестве , понимается как суперпозиция "внешней" функции  и "внутренних" функций , , определенных на множестве . При этом множество значений

совпадает с областью определения функции . Переменные ,  называем независимыми; ,  – промежуточными.

Число независимых и промежуточных переменных может быть различным.

Рассмотрим теорему о дифференцируемости сложной функции , . Ее доказательство и формула производной сложной функции может быть распространена на другие
виды сложной ФНП.

ТЕОРЕМА. Если

функция ,   – дифференцируемая в точке , , т.е. , причем ;

функция ,   – дифференцируемая в точке , , т.е. , причем ;

функция , , где

  – дифференцируемая в точке , где , ,
т.е. , где , причем ,

то сложная функция  дифференцируема
в точке .

Доказательство. Пусть , . Тогда
последовательно имеем

, где , , т.е. ;

аналогично .

Используя условие теоремы, можно записать

, поскольку

.

Здесь  в силу дифференцируемости функций ,  и  по условиям теоремы.

Заметим, что число

  –

производная рассматриваемой сложной функции  в точке .

Для вычисления производных сложной функции в общем случае нужно: 1) сложную функцию дифференцировать по независимым
переменным; 2) установить число независимых переменных (что
соответствует количеству возможных частных производных первого порядка сложной функции); 3) определить число промежуточных переменных (т.е. количество слагаемых в формуле для значения
каждой частной производной сложной функции).


порошковая покраска дисков
Вычисление интеграла