История искусства Экология энергетики Инженерная графика и машиностроительное черчение Математика решение задач и примеров Курс лекций по физике и электротехнике
Функция нескольких переменных Интеграл Типовые задачи Системы линейных уравнений Предел функции Неопределенный интеграл Производная и дифференциал Неопределенный интеграл

Диффенцирование неявно заданной функции

ПРИМЕР 2. Найти частные производные функции , заданной неявно уравнением  в окрестности точки .

Решение. Можно применить формулы для  и , но в данном случае проще продифференцировать тождество, соответствующее уравнению, сначала по  (), а затем по ().
Получим 1) , откуда  и ; аналогично

2)   и отсюда .

Для нахождения производной  дифференцируем еще раз по  первое тождество (), получаем

  или , отсюда  и .

Аналогично вычисляются другие частные производные второго и большего порядка.

ЗАДАНИЕ для САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1. Найти , если .

2. Найти приближенное представление неявно заданной функции уравнением   в окрестности точки  до второго
порядка включительно.

3. Для функции , заданной неявно уравнением  в окрестности точки , найти .

4. Разложить по формуле Тейлора в окрестности точки  до членов первого порядка включительно функцию ,
заданную неявно уравнением  в
окрестности точки .

Ответы. 1. .

2. .

3. , , , , .

4. .


Вычисление интеграла