Математика - множества, функции, пределы, производная

Применение формулы Тейлора для нахождения пределов и приближённых вычислений.

 7.9.1. Нахождение пределов с помощью формулы Тейлора. Рассмотрим примеры: Понятие дифференциала функции Определение и геометрический смысл дифференциала

. Так как в знаменателе стоит х5, то при представлении функций, стоящих в числителе, по формуле Маклорена, мы должны брать многочлены не ниже пятой степени: ;  (следующий член разложения имеет шестую степень) ,

2. . Здесь мы в выкладках обязаны удерживать члены до четвёртой степени:

поэтому .

  7.9.2. Приближённые вычисления с помощью формулы Тейлора. В разделе 6.8.4 Применение дифференциала в приближённых вычислениях мы пользовались выражением у(x+Dх) @ у(x)+ у'(x) Dх, которое, как теперь очевидно, содержит два первых члена формулы Тейлора. Формула Тейлора обобщает это выражение; она позволяет проводить более точные вычисления и оценивать точность этих вычислений. Рассмотрим следующий пример: требуется вычислить sin1 с погрешностью, не превышающей 0,00001. Остаточный член в форме Лагранжа для функции  имеет вид, следовательно . Подбором находим, что , следовательно, мы должны взять степени х вплоть до седьмой:

Касательная плоскость. Геометрический смысл дифференциала функции двух переменных. Дифференцирование сложной функции. Инвариантность формы первого дифференциала. Вычисление частных производных неявно заданной функции. Частные производные высших порядков. Равенство смешанных производных. Дифференциалы высших порядков.
Примеры вычисления производной