Математика - множества, функции, пределы, производная

Формула интегрирования по частям для определённого интеграла. Если  - непрерывно дифференцируемые функции, то .

 Док-во. Интегрируем равенство  в пределах от  до : . Функция в левом интеграле имеет первообразную , по формуле Ньютона-Лейбница , следовательно, , откуда и следует доказываемое равенство.

 Пример: . Радиус сходимости. Из теоремы Абеля следует, что должно существовать такое граничное значение x =R ниже которого ряд ( 6 ) сходится, а выше расходится.

 11.3.4. Замена переменной в определённом интеграле. Теорема. Пусть функция

определена, непрерывно дифференцируема и монотонна на отрезке ,

,

функция  непрерывна на отрезке .

Тогда .

Док-во. Пусть  - первообразная для функции , т.е. , тогда  - первообразная для функции . , что и требовалось доказать.

 При решении задач нельзя забывать о том, что при переходе к новой переменной надо обязательно вычислить новые пределы интеграла. Пример:

.

Замена переменных в двойном интеграле. Двойной интеграл в полярных координатах. Кубируемые тела и их объемы. Понятие тройного интеграла. Замена переменных в тройном интеграле. Тройной интеграл в цилиндрических и сферических координатах. Вычисление объемов тел. Вычисление площадей гладких поверхностей.
Примеры вычисления производной