Инженерная графика

История искусства
Живопись Франции
Живопись Испания
Курбе и реализм
Промышленная архитектура и
эстетика века машин
Архитектура во время перемен
Русские художники начала 20 века
Василий Васильевич Кандинский
Баухаус
Архитектура Москвы
История абстрактного искусства
Импрессионизм
художественная школа
Новая техника живописи
выставки импрессионистов
Импрессионисты и символисты
Ван Гог
Гоген Поль Дега Эдгар
Мане Эдуард Моне Клод
Революция соборов
Энергетика
Экология энергетики
Анализ работы электрофильтров
Регенеративные методы
Ядерное топливо
Математическое моделирование экологических систем
Ядерные топливные циклы
Графика
Выполнение графических работ
Машиностроительное черчение
Инженерная графика
Изучаем ArchiCAD
Строительное проектирование
Трехмерная проекция
Maya 3D
Трехмерное объектно-ориентированное
программное обеспечение CAD
Математика решение задач
Функция нескольких переменных
Интеграл Типовые задачи
Системы линейных уравнений
Предел функции
Производная и дифференциал
Неопределенный интеграл
Теория вероятности
Математика примеры решения задач
Обыкновенные дифференциальные
уравнения
Функция комплексной переменной
Дифференциальное исчисление
Элементы линейной алгебры
Пределы и непрерывность функции
Векторная алгебра
Математический анализ
Исследование функций
аналитическая геометрия
Числовые последовательности
Графические методы решения задач
Информатика
Диспетчер доступа
Межсетевое экранирование
Центральный процессор
персонального компьютера
История развития ПК
Сетевые службы Active Directory
Дополнительные сетевые службы
Физика решение задач
Квантовая и атомная физика
Решение задач по физике примеры
Курс лекций по физике
Расчет электрических цепей.
Исследование линейной цепи
Линейные электрические цепи
Методика расчёта электрических цепей
Физика Кинематика
примеры решения задач
Лекции по физике теория газов

Для тех, кто решил получить высшее образование, совершенно необходимо усвоить основной язык общения на производстве. Это язык инженерной графики. Теория изображения пространственных геометрических фигур на плоскости и практика выполнения технических чертежей излагаются в курсах начертательной геометрии и машиностроительного черчения.

Длина изображения отрезка, параллельного плоскости проекций, равна длине самого отрезка

Комплексный чертеж на примере изображения точки Геометрический аппарат проецирования и метод Г. Монжа получения обратимых изображений Комплексный чертеж точки

Законы проекционной связи на комплексном чертеже На комплексном чертеже – произвольная точка . Задать точку   правее точки  на 20 мм, ближе ее на 10 мм и выше – на 15 мм. На линии связи  отметить разницу  и через полученную точку под прямым углом провести линию связи для последующего построения на ней проекций и .

Основные геометрические фигуры Способы задания геометрических фигур. Два способа задания геометрических фигур: кинематический и статический. Кинематический способ основан на перемещении в пространстве точки или образующей линии по определенному закону. Закон перемещения задается направляющими элементами: точками, линиями или плоскостями. Совокупность образующей и направляющих называется определителем геометрической фигуры.

Основные геометрические фигуры Геометрические фигуры относительно плоскостей проекций могут занимать произвольное (общее) или одно из частных положений. Другая разновидность геометрических фигур частного положения – проецирующие прямые и плоскости: горизонтально проецирующие, фронтально проецирующие и профильно проецирующие

Кривая линия общего вида Ограничимся кривыми линиями общего вида. Под которыми следует понимать плоские и пространственные кривые, не имеющие определенно выраженного закона образования. Для задания таких линий требуется: теоретически бесконечное, а практически – разумное конечное число точек.

Поверхность вращения образуется вращением линии вокруг неподвижной оси

Взаимопринадлежность геометрических фигур Общие понятия взаимопринадлежности Элементарная (основная) задача на принадлежность, без которой бесполезно пытаться решать любую задачу на ту же тему, - это задача на принадлежность точки к плоскости или к любой криволинейной поверхности

Точка на линии Положение о том, что точка на прямой проецируется в точку на проекции этой прямой (одно из инвариантных свойств проецирования) справедливо и для кривой линии. Прямая и точка на плоскости

Точка и линия на поверхности. Напомним уже известное, что точка принадлежит поверхности, если она на линии, принадлежащей поверхности. Хорошо, если эта линия имеет простые проекции. В противном случае приходится прибегать к способу случайной кривой на каркасе поверхности. При построении линии на поверхности следует учитывать, что полностью или частично она может быть невидимой. Для наглядности и для удобства обводки чертежа невидимые проекции рекомендуется изображать в виде крестика. Должна соблюдаться и последовательность решения задачи

Пересечение геометрических фигур Пересечь геометрические фигуры – значит определить их общие точки и линии. И грамотно обвести чертеж с учетом видимости. Для этого совершенно необходимо хорошее усвоение пройденных тем таких, как принадлежность, особенности вырожденных проекций и видимость конкурирующих точек. В рассмотренных примерах определение видимости можно определять без привлечения конкурирующих точек. Достаточно сопоставить положение вырожденной проекции относительно проекции второй фигуры и (условно) проекции наблюдателя

Пример. Построить сечение пирамиды

Пересечение геометрических фигур с привлечением посредников Сложнее решаются задачи на пересечение геометрических фигур, если ни одна из них не является проецирующей. В таких случаях трудно обойтись без привлечения третьих участников пересечения – так называемых посредников

Метод проецирующих секущих плоскостей Пример . Построить линию пересечения плоскостей

Пример. Построить линию пересечения закрытого тора и полусферы

Метод концентрических сфер применяется для пересечения поверхностей вращения, у которых общая плоскость симметрии параллельна плоскости проекций. В этом случае сфера с центром в точке пересечения осей вращения соосна с поверхностями и пересекает их по окружностям.

Частный случай теоремы Г.Монжа Если две поверхности вращения 2-го порядка(конусы и цилиндры)описаны вокруг общей сферы, то они пересекаются по двум линиям того же порядка. Это могут быть эллипсы или параболы. Плоскости которые пересекаются по прямой, проходящей через точки пересечения линий касания сферы с заданными поверхностями.

Преобразование комплексного чертежа и способ прямоугольного треугольника При построении новой проекции точки действует следующий закон проекционной связи. Расстояние от новой оси проекций до новой проекции точки равно расстоянию от старой оси до старой проекции.

Способ вращения вокруг проецирующей прямой В процессе вращения геометрической фигуры каждая ее точка описывает в пространстве окружность, плоскость которой перпендикулярна к оси вращения, а центр – в точке пересечения оси и этой плоскости

Способ прямоугольного треугольника применяется в задачах, в которых требуется определить натуральную величину отрезка, разность координат концов отрезка, углы наклона его к плоскостям проекций и так далее. Посмотрим на способ прямоугольного треугольника как частный случай замены плоскостей проекций.

Параллельность прямых и плоскостей Прямая параллельна плоскости, если она параллельна какой-либо прямой этой плоскости. Перпендикулярность прямых и плоскостей

Линия наибольшего наклона на плоскости

Русские художники