курсы начертательной геометрии

Инженерная графика Сечения, разрезы, построения

Метод эксцентрических сфер применяется для построения линии пересечении поверхностей вращения, у которых оси расположены в одной плоскости, являющейся плоскостью симметрии. При этом пересекающиеся поверхности должны иметь семейство круговых сечений.

Задание: даны две поверхности вращения - тор и конус, оси которых находятся в одной плоскости, параллельной П1 (рис. 13.7). Требуется построить линии их пересечения.

Решение: прежде всего, фиксируют опорные точки пересечения очерковых меридианов 1 и 2. Затем через ось вращения поверхности кольца проводят фронтальный след 2 фронтально проецирующей плоскости . Линия пересечения её с поверхностью тора - окружность. Центр сферы, пересекающей кольцо по окружности, находится на перпендикуляре, восстановленном из центра такой окружности к секущей проецирующей плоскости. Чтобы конус пересекался вспомогательной секущей сферой по окружности, её центр должен находиться на оси конуса. Точка пересечения перпендикуляра к проецирующей плоскости с осью конуса (O2) выбирается центром вспомогательной секущей сферы. Радиус ее равен расстоянию от центра до точки пересечения меридиана тора со следом плоскости 1.2- Такая вспомогательная секущая сфера пересекает кольцо и конус вращения по окружностям, фронтальные проекции которых - отрезки прямых. Точка пресечения этих отрезков 32 (рис. 13.7) принадлежит искомой линии пересечения поверхностей.

Вспомогательные сферы имеют различные центры на оси конуса вращения; так, при построении проекции - точки 42 - О'2. Горизонтальные проекции точек пересечения строят по принадлежности этих точек к одной из поверхностей, используя параллели, например, конуса.

Рисование аксонометрических проекций геометрических тел сводится к упрощенному построению поверхностей данных тел и к построению проекций точек и линий, находящихся на этих поверхностях. Рисование правильной шестигранной пирамиды, призмы Строим проекцию основания данной пирамиды как многоугольника, лежащего в плоскости Н.
Аксонометрические изображения деталей