История искусства Экология энергетики Инженерная графика и машиностроительное черчение Математика решение задач и примеров Курс лекций по физике и электротехнике
Топливо для ядерных реакторов Урановый цикл Уран-ториевый цикл Уран-плутонивый цикл оружейный плутоний Торий-плутонивый цикл Добыча урановой руды Обогащение урана Временное хранение ОЯТ Транспортировка радиоактивных веществ Твэлы

Схема равновесного реактора с оборотом топлива. Значение топливных циклов этого типа состоит в увеличении степени эффективного использования ядерного топлива.
Параметры реакторов-размножителей на быстрых нейтронах и тепловых реакторов

Диффузия в потоке пара (противопоточная масс-диффузия)

Разделение изотопов происходит в цилиндрическом сосуде (колонне), перегороженном вдоль оси диафрагмой, содержащей около 103 отверстий на 1 см2. Газообразная изотопная смесь движется навстречу потоку вспомогательного пара. Вследствие градиента (перепада) концентрации газа и пара в поперечном сечении цилиндра и большего коэффициента диффузии для лёгких молекул происходит обогащение лёгким изотопом части газа, прошедшего сквозь поток пара в левую часть цилиндра. Обогащённая часть выводится из верхнего конца цилиндра вместе с основным потоком пара, а оставшаяся в правой половине часть газа движется вдоль диафрагмы и отводится из аппарата. Пар, проникший в правую часть, конденсируется. На разделительных установках, состоящих из нескольких десятков последовательно соединённых диффузионных колонок с испаряющейся жидкостью (ртуть, ксилол и др.), разделяются в лабораторных масштабах (до 1 кг) изотопы неона, аргона, углерода, криптона, серы.

Термодиффузия

В этом случае опять же, используется различие в скоростях движения молекул. Более легкие из них при существовании разницы температуры имеют свойство оказываться в более нагретой области. Коэффициент разделения зависит от отношения разницы массы изотопов к общей массе и больший для легких элементов. Термодиффузионный процесс проводят в пустотелых колоннах с охлаждаемыми стенками и с раскаленной проволокой, протянутой в центре вдоль колонны. Такая колонна в зависимости от ее высоты равноценна многим последовательно соединенным ступеням. Прямой и возвратный потоки в колонне обеспечиваются естественными конвекционными токами (вдоль раскаленной проволоки ток направлен вверх, а вдоль стенок - вниз). Между потоками в каждом поперечном сечении протекают термодиффузионные процессы, последовательное наложение которых приводит к накоплению тяжелого изотопа внизу колонны, а более легкого - наверху. Несмотря на свою простоту, в этом методе требуются большие энергозатраты для создания и поддержания нагрева. Поэтому широко не применяется.

Обычно термодиффузионная разделительная колонка состоит из двух коаксиально расположенных труб, в которых поддерживаются различные температуры Разделяемая смесь вводится между ними. Перепад температур АТ между поверхностями труб создаёт диффузионный поток, что приводит к появлению разности концентрации изотопов в поперечном сечении колонки. Одновременно перепад температур приводит к возникновению конвективных вертикальных потоков газа. Вследствие этого более лёгкие изотопы накапливаются у горячей поверхности внутренней трубы и движутся вверх. Коэффициент разделения

где у — постоянная термодиффузии, зависящая от относительной разности масс изотопов, а T = (T1 + T2)/2. Термодиффузионный метод позволяет разделять изотопы как в газообразной, так и в жидкой фазе. Возможный ассортимент разделяемых изотопов шире, чем при разделении методом газовой диффузии или диффузии в потоке пара. Однако для жидкой фазы а мало. Метод удобен при разделении изотопов в лабораторных условиях вследствие простоты, отсутствия вакуумных насосов и т. д.

Этим методом был получен Не с содержанием 0,2% 3He (в природной смеси 1,5-10-5%), изотопы 18O, 15N, 13C, 20Ne, 22Ne, 35Cl, 84Kr, 86Kr с концентрацией > 99,5%. Термодиффузия использовалась в промышленном масштабе в США для предварительного обогащения 235U перед окончательным разделением его на электромагнитной установке. Термодиффузионный завод состоял из 2142 колонн высотой 15 м.

Замыкание топливного цикла при использовании реакторов на тепловых нейтронах не решает проблемы принципиального улучшения эффективности использования топлива даже в случае жидкосолевых ториевых бридеров и конверторов с внешним источником нейтронов - по причине неудовлетворительного баланса нейтронов при делении ядерного топлива в тепловом спектре нейтронов.
Ядерные топливные циклы производство топлива для ядерных реакторов