История искусства Экология энергетики Инженерная графика и машиностроительное черчение Математика решение задач и примеров Курс лекций по физике и электротехнике
Векторная алгебра и аналитическая геометрия

Контрольная работа по математике примеры решений

Неопределенный интеграл

Пример. Найти интеграл .

Решение. Для того, чтобы избавиться от иррациональности в подынтегральном выражении, нужно сделать следующую замену:

Тогда данный интеграл запишем в виде:

Подынтегральное выражение представляет собой неправильную дробь, в которой нужно выделить целую часть путем деления многочлен на многочлен: .

Возвращаясь к интегралу, получим:

Заметим, что доказанная формула, в отличие от формулы замены переменной в неопределённом интеграле, даёт нам возможность после перехода к интегралу от функции новой переменной $ x$не возвращаться к исходному интегралу от функции переменной $ t$. После того, как замена сделана, мы можем "забыть", как выглядел исходный интеграл, и продолжать преобразования интеграла от функции новой переменной. Именно на том, что к старой переменной возвращаться не приходится, мы и получаем экономию усилий при применении формулы замены переменной в определённом интеграле, по сравнению с тем, что получилось бы, если бы мы просто нашли первообразную и применили формулу Ньютона - Лейбница.

Обратим ваше внимание на важную особенность формулы: кроме подынтегрального выражения, при замене переменной меняются и пределы интегрирования. Действительно, в интеграле по новой переменной $ x$должны быть указаны пределы изменения именно $ x$(то есть $ a$и $ b$), в то время как в исходном интеграле по переменной $ t$указаны пределы изменения $ t$(то есть $ {\alpha}$и $ {\beta}$)!

Советы о том, какая замена целесообразна для вычисления того или иного интеграла, -- те же самые, что и при вычислении неопределённых интегралов, так что тут ничего нового изучать не придётся.     

Общее решение дифференциального уравнения. Однако, если поставить задачу: найти решение, удовлетворяющее условию y(x0)=y0, то при определенных условиях такая задача имеет единственное решение. Задача об отыскании решения y=y(x) дифференциального уравнения y'=f(x, y), удовлетворяющего начальному условию y(x0)=y0, называется задачей Коши. Решение задачи Коши называют частным решением.
наибольшее и наименьшее значение функции