История искусства Экология энергетики Инженерная графика и машиностроительное черчение Математика решение задач и примеров Курс лекций по физике и электротехнике
Векторная алгебра и аналитическая геометрия

Математика примеры решения задач самостоятельной работы

Векторная алгебра.

Задание: Перпендикулярны ли векторы ?

Решение: Два вектора перпендикулярны , если их скалярное произведение равно 0,скалярное произведение векторов, заданных проекциями на оси координат, вычисляется по формуле:, где  вычислим скалярное произведение:

векторы не перпендикулярны.

Задание: Компланарны ли векторы ?

Решение: Три вектора компланарны, если смешанное произведение векторов равно 0, смешанное произведение векторов вычисляется по формуле: , гдевычислим смешанное произведение векторов:

векторы не компланарны.

Критерий совместности

Система линейных уравнений имеет вид:

 a11 x1 + a12 x2 +... + a1n xn = b1,

 a21 x1 + a22 x2 +... + a2n xn = b2, (5.1)

 ... ... ... ...

 am1 x1 + am1 x2 +... + amn xn = bm.

Здесь аi j и bi (i = ; j = ) - заданные, а xj - неизвестные действительные числа. Используя понятие произведения матриц, можно переписать систему (5.1) в виде:

AX = B, (5.2)

где A = (аi j) - матрица, состоящая из коэффициентов при неизвестных системы (5.1), которая называется матрицей системы, X = (x1, x2,..., xn)T,
B = (b1, b2,..., bm)T - векторы-столбцы, составленные соответственно из неизвестных xj и из свободных членов bi.

Упорядоченная совокупность n вещественных чисел (c1, c2,..., cn) называется решением системы (5.1), если в результате подстановки этих чисел вместо соответствующих переменных x1, x2,..., xn каждое уравнение системы обратится в арифметическое тождество; другими словами, если существует вектор C= (c1, c2,..., cn)T такой, что AC º B.

Система (5.1) называется совместной, или разрешимой, если она имеет по крайней мере одно решение. Система называется несовместной, или неразрешимой, если она не имеет решений.

Матрица

`A = ,

образованная путем приписывания справа к матрице A столбца свободных членов, называется расширенной матрицей системы.

Линейные дифференциальные уравнения 1-го порядка. Метод вариации произвольной постоянной и метод представления искомой функции в виде произведения. Общее решение линейного однородного уравнения первого порядка.
наибольшее и наименьшее значение функции