История искусства Экология энергетики Инженерная графика и машиностроительное черчение Математика решение задач и примеров Курс лекций по физике и электротехнике
Векторная алгебра и аналитическая геометрия

Математика примеры решения задач самостоятельной работы

Векторная алгебра.

Задание: При каком значении  векторы  где , перпендикулярны?

Решение:

1) Для определения , при котором векторы перпендикулярны, необходимо использовать условие перпендикулярности двух векторов (это условие было рассмотрено в задании 2)  мы сможем найти из условия: , для этого найдем проекции векторов  и  на оси координат, заданных координатами точек начала и конца вектора. В этом случае проекции вектора на оси координат равны разности координат точек, задающих конец и начало вектора  

Итак: векторы  и  перпендикулярны при  и при  

Задание: Даны точки:

Найти:

пр;

  ;

 ;

орт вектора ;

 ;

;

  Решение:

1. Из определения скалярного произведения следует, что проекцию вектора на вектор можно вычислить по формуле: пр где скалярное произведение векторов вычисляется по формуле: где  и длина вектора: итак ,в нашем случае, формула принимает вид:  для нахождения  необходимо найти проекции векторов на оси координат, заданных координатами точек начала и конца векторов, скалярное произведение и длину соответствующего вектора:

 

  на основании формулы, выше написанной, получим :

  

 пр;

Линейная алгебра.

Понятие матрицы. Виды матриц.

 Прямоугольной матрицей размера m´n называется совокупность mn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов. Мы будем записывать матрицу в виде

A =  (1.1)

или сокращенно в виде A = (ai j) (i =; j = ). Числа ai j, составляющие данную матрицу, называются ее элементами; первый индекс указывает на номер строки, второй - на номер столбца. Две матрицы A = (ai j) и B = (bi j) одинакового размера называются равными, если попарно равны их элементы, стоящие на одинаковых местах, то есть A = B, если ai j = bi j.

Матрица, состоящая из одной строки или одного столбца, называется соответственно вектор-строкой или вектор-столбцом. Вектор-столбцы и вектор-строки называют просто векторами.

Линейные дифференциальные уравнения 1-го порядка. Метод вариации произвольной постоянной и метод представления искомой функции в виде произведения. Общее решение линейного однородного уравнения первого порядка.
наибольшее и наименьшее значение функции