История искусства Экология энергетики Инженерная графика и машиностроительное черчение Математика решение задач и примеров Курс лекций по физике и электротехнике
Векторная алгебра и аналитическая геометрия

Математика примеры решения задач самостоятельной работы

Аналитическая геометрия

Задача

1) Составить уравнение плоскости, проходящей через точки , , .

Решение.

Уравнение плоскости, проходящей через точки , ,  имеет вид:

  (3.7)

Тогда уравнение плоскости  в силу уравнения (3.7) имеет вид  или .

Запишем полученное уравнение в общем виде, т.е. в виде . Для этого раскроем определитель по первой строке . После преобразований получим: .

2) Найти нормальный вектор плоскости .

Решение.

Нормальный вектор  - это вектор, перпендикулярный плоскости. Если плоскость задана общим уравнением , то нормальный вектор имеет координаты .

Рис. 3

Для плоскости  нормальным является вектор =.

Отметим, что любой вектор, коллинеарный вектору = так же является нормальным вектором плоскости . Таким образом, при каждом ненулевом  вектор с координатами   будет являться нормальным вектором рассматриваемой плоскости.

Формулы Крамера

Метод Крамера состоит в том, что мы последовательно находим главный определитель системы (5.3), т.е. определитель матрицы А

D = det (ai j)

и n вспомогательных определителей D i (i=), которые получаются из определителя D заменой i-го столбца столбцом свободных членов.

Формулы Крамера имеют вид:

D × x i = D i (i = ). (5.4)

Из (5.4) следует правило Крамера, которое дает исчерпывающий ответ на вопрос о совместности системы (5.3): если главный определитель системы отличен от нуля, то система имеет единственное решение, определяемое по формулам:

x i = D i / D.

Если главный определитель системы D и все вспомогательные определители D i = 0 (i= ), то система имеет бесчисленное множество решений. Если главный определитель системы D = 0, а хотя бы один вспомогательный определитель отличен от нуля, то система несовместна.

Дифференциальные уравнения высших порядков. Задача Коши. Теорема о существовании и единственности решения задачи Коши. Понятие общего и частного решения. Дифференциальные уравнения высших порядков, допускающие понижение порядков. В дальнейшем будем рассматривать обыкновенные дифференциальные уравнения, разрешенные относительно старшей производной - уравнения, записанные в нормальной форме: y(n)) = f(x, y, y', y'', ..., y(n-1)). (2)
наибольшее и наименьшее значение функции