История искусства Экология энергетики Инженерная графика и машиностроительное черчение Математика решение задач и примеров Курс лекций по физике и электротехнике
Векторная алгебра и аналитическая геометрия

Контрольная работа по математике примеры решений

Задание.  Найти область плоскости , в которую отображается с помощью функции  область :  плоскости .

Решение.

Для того чтобы найти образ области  при отображении , нужно найти образ границы  области , затем взять произвольную точку из области  и найти ее образ.

Правило для определения уравнения образа кривой.

Пусть в области  кривая задана . Чтобы найти уравнение образа  этой кривой в плоскости  при отображении с помощью функции , нужно исключить  и  из уравнений:

  (1)

Если кривая задана параметрическими уравнениями:

  или ,

 то параметрические уравнения её образа при отображении  будут

В данном примере граница области  состоит из трех частей:  . Найдем ее образ при данном отображении.

Выделим и действительную и мнимую части функции.

;

, .

Возьмем первую часть границы и найдем ее образ. Составим систему (1):

Возведем в квадрат первое и второе уравнения системы и сложим:

.

Окончательное уравнение границы  при .

Аналогично находим образ :  при .

Образ   находим из системы:

Следовательно, образ границы :  при  и  при ; . Изобразим образы границ  на плоскости .

Для изображения образа области  на плоскости  возьмем контрольную точку. Точка  обратится в точку .

Абсолютная сходимость несобственных интегралов по бесконечному промежутку. В предыдущем разделе рассматривались интегралы от знакоположительных (знакопостоянных) функций; мы убедились, что для таких несобственных интегралов существуют хорошие методы исследования их сходимости. Естественен вопрос: нельзя ли свести исследование интеграла от произвольной функции f(x) к исследованию интеграла от положительной функции | f(x)|? Можно показать, что если сходится интеграл , то обязательно сходится интеграл (идея доказательства: разобьем отрезок Xb = [a, b] на два множества, и , т.е. к первому множеству отнесены точки, в которых функция неотрицательна, ко второму - в которых функция отрицательна. Тогда , . В последней сумме оба слагаемые - монотонно возрастающие с ростом b, ограниченные сверху, следовательно, имеющие конечный предел при . Отсюда следует, что имеет конечный предел и предыдущая сумма). Обратное утверждение неверно, т.е. при сходимости интеграла интеграл может расходиться. Введём важное понятие абсолютной сходимости.

Опр.7.1.4. Если сходится интеграл , то интеграл называется сходящимся абсолютно. Если сходится интеграл , а интеграл расходится, то интеграл называется сходящимся условно.

 Признак Вейерштрасса равномерной сходимости функционального ряда: Если члены функционального рада  в некотором промежутке Е не превосходит по абс величине соотв членов сход числового ряда с положительными членами, т.е. если для всех , то данный ряд сходится в этом промежутке равномерно.
наибольшее и наименьшее значение функции